
PERIYAR UNIVERSITY

(NAAC 'A++' Grade with CGPA 3.61 (Cycle - 3)

State University - NIRF Rank 56 - State Public University Rank 25

SALEM - 636 011

CENTRE FOR DISTANCE AND ONLINE EDUCATION

(CDOE)

MASTER OF COMPUTER APPLICATIONS

SEMESTER - I

CORE II : PYTHON PROGRAMMING

(Candidates admitted from 2024 onwards)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

1 Periyar University – CDOE| Self-Learning Material

PERIYAR UNIVERSITY

M.C.A 2024 admission onwards

CORE – II

Python Programming

Prepared by:

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

CENTRE FOR DISTANCE AND ONLINE EDUCATION (CDOE)

Periyar University
Salem - 636011

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

2 Periyar University – CDOE| Self-Learning Material

SYLLABUS

PYTHON PROGRAMMING

Unit I: Introduction : Fundamental ideas of Computer Science - Strings,

Assignment and Comments - Numeric Data types and Character sets - Expressions

- Loops and Selection Statements: Definite iteration: the for Loop - selection: if

and if-else statements - Conditional iteration: the while Loop

Unit – II: Strings and Text Files: Accessing Characters and substrings in strings -

Data encryption-Strings and Number systems- String methods - Text - Lists and

Dictionaries: Lists - Dictionaries - Design with Functions: A Quick review -

Problem Solving with top-Down Design - Design with recursive Functions -

Managing a Program’s namespace - Higher-Order Functions

Unit III: Design with Classes: Getting inside Objects and Classes - Data-Modeling

Examples - Building a New Data Structure - The Two - Dimensional Grid -

Structuring Classes with Inheritance and Polymorphism-Graphical User

Interfaces-The Behavior of terminal-Based programs and GUI-Based programs -

Coding Simple GUI-Based programs - Windows and Window Components -

Command Buttons and responding to events

Unit IV: Working with Python Packages: NumPy Library-Ndarray- Basic

Operations - Indexing, Slicing and Iteration - Array manipulation - Pandas - The

Series - The DataFrame - The Index Objects - Data Vizualization with Matplotlib-

The Matplotlib Architecture -Pyplot- The Plotting Window - Adding Elements to

the Chart - Line Charts - Bar Charts - Pie charts

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

3 Periyar University – CDOE| Self-Learning Material

Unit V: Django: Installing Django- Building an Application - Project Creation -

Designing the Data Schema - Creating an administration site for models - Working

with QuerySets and Managers - Retrieving Objects - Building List and Detail

Views

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

4 Periyar University – CDOE| Self-Learning Material

 TABLE OF CONTENTS

UNIT TOPICS PAGE

1 Introduction, Loops and Selection Statements 1

2
Strings and Text Files , Lists and Dictionaries, Design

with Functions

64

3 Design with Classes 77

4 Working with Python Packages 132

5 Django 188

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

5 Periyar University – CDOE| Self-Learning Material

PYTHON PROGRAMMING

Introduction : Fundamental Ideas of Computer Science

UNIT 1 – INTRODUCTION

Introduction : Fundamental ideas of Computer Science - Strings, Assignment

and Comments - Numeric Data types and Character sets - Expressions -

Loops and Selection Statements: Definite iteration: the for Loop - selection:

if and if-else statements - Conditional iteration: the while Loop

Section Topic Page No.

UNIT – I

Unit Objectives

Section 1.1 Introduction: Fundamental Ideas of Computer Science 1

1.1.1 Strings, Assignment and Comments 7

1.1.2 Numeric Data Types and Character Sets 20

1.1.3 Expressions 25

 Let Us Sum Up 28

 Check Your Progress 29

Section 1.2 Loops and Selection Statements 33

1.2.1 Define Iteration 36

1.2.2 The For Loop 39

1.2.3 Selection : IF and IF – ELSE Statements 41

1.2.4 Conditional Iteration : The While Loop 44

1.2.5 Players in Financial Services Sector 45

 Let Us Sum Up 48

 Check Your Progress 48

1.8 Unit- Summary 55

1.9 Glossary 55

1.10 Self- Assessment Questions 56

1.11 Activities / Exercises / Case Studies 57

1.12 Answers for Check your Progress 59

1.13 References and Suggested Readings 61

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

6 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVE

In this unit, students will gain a comprehensive understanding of Abstract Data

Types (ADTs), focusing on their definition, implementation, and significance in data

structure design. They will learn to work with the Date ADT and Bag ADT,

implementing and performing basic operations on these structures using Python. The

unit will cover arrays extensively, including Python lists, two-dimensional arrays, and

the Matrix ADT, equipping students with the skills to manipulate these data structures

effectively. Additionally, students will explore sets and maps, understanding their

properties and performing operations using Python’s set and dictionary data

structures. The concept of multi-dimensional arrays will also be addressed,

highlighting their applications and implementation. Finally, students will learn to use

iterators for traversing custom data structures, enhancing their ability to handle

complex data manipulations.

SECTION 1.1: INTRODUCTION

Python is a high-level, interpreted programming language known for its

simplicity and readability, making it an excellent choice for beginners and experienced

programmers alike. Created by Guido van Rossum and first released in 1991, Python

emphasizes code readability and allows programmers to express concepts in fewer

lines of code compared to languages like C++ or Java. Its versatile nature makes it

suitable for a wide range of applications, including web development, data analysis,

artificial intelligence, scientific computing, and automation.

Python's syntax is clean and easy to learn, with a strong emphasis on

readability and the use of whitespace to define code blocks rather than braces or

keywords. This design choice reduces the potential for errors and makes the code

more visually appealing. The language supports multiple programming paradigms,

including procedural, object-oriented, and functional programming, providing flexibility

for developers to choose the best approach for their projects.

One of Python's significant strengths is its extensive standard library, which

offers modules and packages for virtually every task, from file I/O and system calls to

web browsing and XML parsing. Additionally, the Python Package Index (PyPI) hosts

thousands of third-party packages that extend Python's capabilities, making it a

powerful tool for tackling a variety of challenges.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

7 Periyar University – CDOE| Self-Learning Material

Python's popularity is also bolstered by its active and supportive community,

which contributes to a wealth of tutorials, documentation, and forums. This community-

driven support network helps newcomers quickly learn and troubleshoot issues,

fostering an environment of continuous learning and improvement. Python's simplicity,

readability, and versatility make it an ideal programming language for beginners and

professionals alike.

1.1.1 – STRINGS ,ASSIGNMENTS AND COMMENTS

A string in is a sequence of characters enclosed in quotes. treats anything

inside single ('...') or double ("...") quotes as a string. Strings are one of the most

commonly used data types in for working with textual data, and they come with a rich

set of built-in functions to manipulate and access the data they hold.

Key Concepts of Strings in

1. Defining Strings

A string can be defined using single, double, or triple quotes:

 Single quotes: 'Hello'

 Double quotes: "Hello"

 Triple quotes: '''Hello''' or """Hello""" (useful for multi-line strings)

Examples

string1 = 'Hello'

string2 = "World"

string3 = '''This is a multi-line string

which spans over multiple lines.'''

2. String Immutability

Strings in are immutable, meaning once a string is created, it cannot be changed.

Any operation that alters a string results in the creation of a new string.

s = "Hello"

s[0] = 'h' # This will raise an error as strings cannot be changed directly.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

8 Periyar University – CDOE| Self-Learning Material

3. Accessing Characters in a String

Strings are treated as arrays of characters, where each character has an index. The

index starts from 0 for the first character, and negative indexing can be used to access

characters from the end of the string.

s = ""

print(s[0]) # Output: P

print(s[-1]) # Output: n (last character)

4. Slicing Strings

Extract a portion of a string using slicing. The slice operation is done using

string[start:end], where start is inclusive, and end is exclusive.

s = "Programming"

print(s[0:6]) # Output: (characters from index 0 to 5)

print(s[6:]) # Output: Programming (characters from index 6 to the end)

print(s[:6]) # Output: (characters from the start to index 5)

5. Concatenation

Strings can be combined using the + operator. This is called string concatenation.

s1 = "Hello"

s2 = "World"

result = s1 + " " + s2 # Output: Hello World

6. Repetition

Strings can be repeated using the * operator.

s = "Hello"

result = s * 3 # Output: HelloHelloHello

7. String Methods

 Provides numerous built-in methods for working with strings. Here are a few

commonly used string methods:

 len(): Returns the length of the string.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

9 Periyar University – CDOE| Self-Learning Material

s = ""

print(len(s)) # Output: 6

 lower(): Converts all characters in the string to lowercase.

s = "Hello"

print(s.lower()) # Output: hello

 upper(): Converts all characters in the string to uppercase.

s = "Hello"

print(s.upper()) # Output: HELLO

 replace(old, new): Replaces all occurrences of a substring with a new

substring.

s = "Hello World"

print(s.replace("World", "")) # Output: Hello

 strip(): Removes leading and trailing whitespace.

s = " Hello "

print(s.strip()) # Output: Hello

8. String Formatting

 supports various ways to format strings, making it easy to insert variables or

expressions into strings:

 Using format():

name = "Alice"

age = 25

sentence = "My name is {} and I am {} years old.".format(name, age)

print(sentence) # Output: My name is Alice and I am 25 years old.

 Using f-strings (introduced in Python 3.6+):

name = "Alice"

age = 25

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

10 Periyar University – CDOE| Self-Learning Material

sentence = f"My name is {name} and I am {age} years old."

print(sentence) # Output: My name is Alice and I am 25 years old.

9. Escape Characters

To include special characters like quotes or newline characters within a string.

Escape characters are used for this purpose:

 \n: Newline

 \t: Tab

 \\: Backslash

 \': Single quote

 \": Double quote

s = "This is a \"\" tutorial\nIt is very helpful!"

print(s)

Output:

This is a "" tutorial

It is very helpful!

10. Iterating Through a String

Iterate through each character in a string using a for loop.

s = ""

for char in s:

 print(char)

String Operations

 String allows various operations to be performed:

1. Membership Operators

 in: Checks if a substring exists within the string.

 not in: Checks if a substring does not exist within the string.

s = " Programming"

print("" in s) # Output: True

print("Java" not in s) # Output: True

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

11 Periyar University – CDOE| Self-Learning Material

2. Comparison Operators

Strings can be compared using comparison operators such as ==, !=, <, >, etc.

s1 = "abc"

s2 = "def"

print(s1 == s2) # Output: False

print(s1 < s2) # Output: True (lexicographically 'abc' < 'def')

3. Slicing and Indexing

Strings can be sliced using indices. Negative indices can also be used to refer to the

position from the end.

s = ""

print(s[1:4]) # Output: yth (substring from index 1 to 3)

print(s[-3:]) # Output: hon (last three characters)

4. Reversing a String

Reverse a string by using slicing with a step value of -1.

s = ""

print(s[::-1]) # Output: nohtyP

STRING OPERATIONS

 Indexing: Accessing individual characters in the string using [].

 Slicing: Extracting parts of the string using : in the subscript.

 Concatenation: Combining strings using the + operator.

 Length: Getting the length of the string using len().

 Case Conversion: Converting the string to uppercase, lowercase, and title case.

 Substring Checking: Using "substring" in string to check if a substring exists.

 Splitting: Splitting the string into a list of words.

 Joining: Joining a list back into a single string using " ".join().

 Replacement: Replacing a substring with another using replace().

 Stripping: Removing leading and trailing whitespaces using strip().

PROGRAM

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

12 Periyar University – CDOE| Self-Learning Material

Defining a string
text = "Hello, Python Programming!"
1. Accessing individual characters using indexing
first_char = text[0] # First character
fifth_char = text[4] # Fifth character
last_char = text[-1] # Last character
2. Slicing to get substrings
substring1 = text[7:13] # Extracting "Python"
substring2 = text[:5] # Extracting "Hello"
substring3 = text[7:] # Extracting from "Python" to end
substring4 = text[-12:-1] # Extracting "Programmin"
3. String concatenation
new_text = "Learning " + text[:6] + "is fun!" # "Learning Hello is fun!"
4. String length
text_length = len(text)
5. Case conversion
uppercase_text = text.upper() # Convert to uppercase
lowercase_text = text.lower() # Convert to lowercase
titlecase_text = text.title() # Convert to title case
6. Checking for substrings
contains_python = "Python" in text # Check if "Python" is in text
7. Splitting the string
split_text = text.split() # Splits the string into words
8. Joining a list into a string
joined_text = " ".join(split_text) # Joins the list back to string
9. String replacement
replaced_text = text.replace("Python", "Java") # Replaces "Python" with "Java"
10. Stripping whitespace
whitespace_str = " Hello, World! "
stripped_text = whitespace_str.strip() # Removes leading and trailing
whitespaces
print("Original text:", text)
print("First character:", first_char)
print("Fifth character:", fifth_char)
print("Last character:", last_char)
print("Substring 1 (Python):", substring1)
print("Substring 2 (Hello):", substring2)
print("Substring 3 (from Python onwards):", substring3)
print("Substring 4 (Programmin):", substring4)
print("New concatenated text:", new_text)
print("Length of text:", text_length)
print("Uppercase text:", uppercase_text)
print("Lowercase text:", lowercase_text)
print("Titlecase text:", titlecase_text)
print("Contains 'Python':", contains_python)
print("Split text:", split_text)
print("Joined text:", joined_text)
print("Replaced text (Python -> Java):", replaced_text)
print("Stripped text:", stripped_text)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

13 Periyar University – CDOE| Self-Learning Material

OUTPUT

Original text: Hello, Python Programming!

First character: H

Fifth character: o

Last character: !

Substring 1 (Python): Python

Substring 2 (Hello): Hello

Substring 3 (from Python onwards): Python Programming!

Substring 4 (Programmin): Programmin

New concatenated text: Learning Hello is fun!

Length of text: 26

Uppercase text: HELLO, PYTHON PROGRAMMING!

Lowercase text: hello, python programming!

Titlecase text: Hello, Python Programming!

Contains 'Python': True

Split text: ['Hello,', 'Python', 'Programming!']

Joined text: Hello, Python Programming!

Replaced text (Python -> Java): Hello, Java Programming!

Stripped text: Hello, World!

Python Operators

Operators are the first tools for processing variables and values. Python

Operators can be grouped under these types:

 Arithmetic Operators

 Assignment Operators

 Membership Operators

 Logical Operators

 Relational Operators

 Identity Operators

 Bitwise Operators

Arithmetic Operators

Mathematical operations on numeric values can be performed by Arithmetic

Operators.

+ - * / // % **

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

14 Periyar University – CDOE| Self-Learning Material

 + (Addition)

 - (Subtraction)

 * (Multiplication)

 / (Division)

 // (Floor Division): Returns the division outcome without the decimal part.

 % (Modulus): Returns the remainder from a division.

 ** (Exponent)

Operator Precedence

Control flow takes any expression left to right by default. However, there are

predefined priority sequences for Python Operators, known as Operator Precedence.

Operator priority sequence from highest to lowest is below:

 ()

 **

 * / // %

 + -

Note: If you encounter two operators from the same priority tier they are simply

processed in Left to Right order

Example:

 >>> 2+2*3

 8

 >>> (2+2)*3

 12

ASSIGNMENT OPERATORS

Assignment Operators are used to assigning a variable reference for a value.

The working of the assignment is from the right-hand side to the left-hand side.

L.H.S ← R.H.S

Example:

 >>> x = 1

 >>> x = y # Name Error

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

15 Periyar University – CDOE| Self-Learning Material

 >>> y = x # Correct assignment

 >>> y

 1

Membership Operators

Membership Operators are used to checking the containment of an item in a

collection. There are two membership operators for contains check: in and not in.

Example:

item in the collection

 >>> 'h' in "Hello"

 False

 >>> 'h' in "hello

 True

 >>> 1 in [2, 40, 100]

 False

not in gives us False wherever in gives True and vice-versa.

Example:

 >>> 1 not in [2, 40, 100]

 True

SAMPLE PROGRAM FOR OPERATORS

Variables for demonstration

a = 15

b = 4

x = [1, 2, 3, 4, 5]

y = [1, 2, 3, 4, 5]

z = [6, 7, 8]

--------------------- Arithmetic Operators ---------------------

print("Arithmetic Operators:")

print(f"a + b = {a + b}") # Addition

print(f"a - b = {a - b}") # Subtraction

print(f"a * b = {a * b}") # Multiplication

print(f"a / b = {a / b}") # Division

print(f"a % b = {a % b}") # Modulus

print(f"a ** b = {a ** b}") # Exponentiation

print(f"a // b = {a // b}") # Floor Division

print("\n")

--------------------- Assignment Operators ---------------------

print("Assignment Operators:")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

16 Periyar University – CDOE| Self-Learning Material

c = 10

print(f"Initial value of c: {c}")

c += 2

print(f"c += 2 => {c}")

c -= 4

print(f"c -= 4 => {c}")

c *= 3

print(f"c *= 3 => {c}")

c /= 2

print(f"c /= 2 => {c}")

c %= 4

print(f"c %= 4 => {c}")

c **= 2

print(f"c **= 2 => {c}")

c //= 3

print(f"c //= 3 => {c}")

print("\n")

--------------------- Membership Operators ---------------------

print("Membership Operators:")

print(f"3 in x: {3 in x}") # True because 3 is in the list `x`

print(f"7 not in x: {7 not in x}") # True because 7 is not in the list `x`

print("\n")

--------------------- Logical Operators ---------------------

print("Logical Operators:")

print(f"(a > b) and (a > 10): {(a > b) and (a > 10)}") # True if both conditions

are True

print(f"(a < b) or (a > 10): {(a < b) or (a > 10)}") # True if any one condition is

True

print(f"not(a == b): {not(a == b)}") # True if a is not equal to b

print("\n")

--------------------- Relational (Comparison) Operators ---------------------

print("Relational (Comparison) Operators:")

print(f"a == b: {a == b}") # False because 15 is not equal to 4

print(f"a != b: {a != b}") # True because 15 is not equal to 4

print(f"a > b: {a > b}") # True because 15 is greater than 4

print(f"a < b: {a < b}") # False because 15 is not less than 4

print(f"a >= b: {a >= b}") # True because 15 is greater than or equal to 4

print(f"a <= b: {a <= b}") # False because 15 is not less than or equal to 4

print("\n")

--------------------- Identity Operators ---------------------

print("Identity Operators:")

print(f"x is y: {x is y}") # True because x and y are the same objects

print(f"x is not z: {x is not z}") # True because x and z are different objects

print("\n")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

17 Periyar University – CDOE| Self-Learning Material

--------------------- Bitwise Operators ---------------------

print("Bitwise Operators:")

print(f"a & b = {a & b}") # Bitwise AND

print(f"a | b = {a | b}") # Bitwise OR

print(f"a ^ b = {a ^ b}") # Bitwise XOR

print(f"~a = {~a}") # Bitwise NOT

print(f"a << 1 = {a << 1}") # Bitwise left shift

print(f"a >> 1 = {a >> 1}") # Bitwise right shift

OUTPUT

Arithmetic Operators:
a + b = 19
a - b = 11
a * b = 60
a / b = 3.75
a % b = 3
a ** b = 50625
a // b = 3
Assignment Operators:
Initial value of c: 10
c += 2 => 12
c -= 4 => 8
c *= 3 => 24
c /= 2 => 12.0
c %= 4 => 0.0
c **= 2 => 0.0
c //= 3 => 0.0
Membership Operators:
3 in x: True
7 not in x: True
Logical Operators:
(a > b) and (a > 10): True
(a < b) or (a > 10): True
not(a == b): True
Relational (Comparison) Operators:
a == b: False
a != b: True
a > b: True
a < b: False
a >= b: True
a <= b: False
Identity Operators:
x is y: True
x is not z: True
Bitwise Operators:
a & b = 4
a | b = 15
a ^ b = 11
~a = -16
a << 1 = 30

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

18 Periyar University – CDOE| Self-Learning Material

a >> 1 = 7

Python Comments

In Python, comments are lines of code that are not executed. They are used to explain

and document the code, making it easier to understand for others or for future

reference. Comments are essential for writing clean, readable, and maintainable code.

There are three types of comments in Python:

1. Single-line comments

2. Multi-line comments

3. Docstrings

1. Single-line Comments

A single-line comment starts with the hash symbol #. Everything on the line

after the # is ignored by the Python interpreter.

Example:

This is a single-line comment

x = 5 # This is also a comment after a statement

print(x) # Output will be 5

 In the above example, the comment describes what the line of code does.

2. Multi-line Comments

Python does not have a built-in syntax for multi-line comments, but you can

use multiple single-line comments or triple quotes (''' or """) to create block

comments.

Option 1: Using multiple single-line comments

This is a multi-line comment

explaining that the following

code prints a greeting message.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

19 Periyar University – CDOE| Self-Learning Material

print("Hello, world!")

Option 2: Using triple quotes

Although technically not comments, you can use triple quotes for multi-line

comments. Python treats text inside triple quotes as a string, but if not assigned to a

variable, it gets ignored by the interpreter.

'''

This is a multi-line comment.

It can span multiple lines.

'''

print("Hello, world!")

3. Docstrings (Documentation Strings)

A docstring is a special kind of comment used to describe a function, class, or

module. Docstrings are written using triple quotes (''' or """) and appear right after the

definition of the function, class, or module.

 Unlike regular comments, docstrings are not ignored by the interpreter. They

can be accessed using the __doc__ attribute.

Example:

def greet():

 """

 This function prints a greeting message.

 """

 print("Hello, world!")

Accessing the docstring

print(greet.__doc__)

Output:

This function prints a greeting message.

 Docstrings are used to provide documentation for code, which can be

displayed by built-in functions like help().

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

20 Periyar University – CDOE| Self-Learning Material

Example with help ():

def add(a, b):

 """

 This function returns the sum of two numbers.

 Parameters:

 a (int): First number

 b (int): Second number

 Returns:

 int: The sum of a and b

 """

 return a + b

help(add)

Output:

Help on function add in module __main__:

add(a, b)

 This function returns the sum of two numbers.

 Parameters:

 a (int): First number

 b (int): Second number

 Returns:

 int: The sum of a and b

1.1.2 – Numeric Datatypes and Character Sets

In Python, numeric data types are used to represent numbers. Python provides

several built-in numeric types, each of which is used for different purposes. The

primary numeric data types in Python are:

1. int (Integer):

 Represents whole numbers, both positive and negative, without any decimal

points.

Example: -5, 0, 42

x = 10

y = -3

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

21 Periyar University – CDOE| Self-Learning Material

2. float (Floating-point number):

 Represents real numbers that have a fractional part, indicated by a decimal

point.

 Example: 3.14, -0.001, 2.0

pi = 3.14159

negative float = -0.5

3. complex (Complex number):

 Represents complex numbers, which have a real part and an imaginary part.

 The imaginary part is denoted by the letter j in Python.

Example: 1+2j, -3.5+4.2j

python

z = 2 + 3j

complex number = -1.5 + 2j

Converting Between Numeric Types

Python provides functions to convert between different numeric types:

 int () converts a number or a string to an integer.

 float () converts a number or a string to a floating-point number.

 complex () converts a number or a string to a complex number.

Python Code: Numeric Data Types

--------------------- Numeric Data Types ---------------------

Integer (int) - Whole numbers

integer_num = 42

print(f"Integer: {integer_num}") # Output: Integer: 42

Floating-point (float) - Numbers with decimal points

float_num = 3.14159

print(f"Float: {float_num}") # Output: Float: 3.14159

Complex number (complex) - Numbers with real and imaginary parts

complex_num = 2 + 3j

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

22 Periyar University – CDOE| Self-Learning Material

print(f"Complex Number: {complex_num}") # Output: Complex Number:

(2+3j)

--------------------- Arithmetic Operations --------------------

Addition

add_result = integer_num + float_num

print(f"Addition of integer and float: {add_result}") # Output: Addition of

integer and float: 45.14159

Subtraction

sub_result = float_num - integer_num

print(f"Subtraction of integer from float: {sub_result}") # Output: Subtraction of

integer from float: -38.85841

Multiplication

mul_result = integer_num * float_num

print(f"Multiplication of integer and float: {mul_result}") # Output: Multiplication

of integer and float: 131.8818

Division

div_result = float_num / integer_num

print(f"Division of float by integer: {div_result}") # Output: Division of float by

integer: 0.07478095238095238

Complex Number Operations

Real part

real_part = complex_num.real

print(f"Real part of complex number: {real_part}") # Output: Real part of

complex number: 2.0

Imaginary part

imaginary_part = complex_num.imag

print(f"Imaginary part of complex number: {imaginary_part}") # Output:

Imaginary part of complex number: 3.0

Complex number conjugate

complex_conjugate = complex_num.conjugate()

print(f"Complex conjugate: {complex_conjugate}") # Output: Complex

conjugate: (2-3j)

Complex number magnitude

complex_magnitude = abs(complex_num)

print(f"Magnitude of complex number: {complex_magnitude}") # Output:

Magnitude of complex number: 3.605551275463989

--------------------- Type Conversion ---------------------

Convert float to integer

float_to_int = int(float_num)

print(f"Float to integer conversion: {float_to_int}") # Output: Float to integer

conversion: 3

Convert integer to float

int_to_float = float(integer_num)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

23 Periyar University – CDOE| Self-Learning Material

print(f"Integer to float conversion: {int_to_float}") # Output: Integer to float

conversion: 42.0

Convert complex to real part (only the real part can be used)

complex_to_real = complex_num.real

print(f"Complex to real part conversion: {complex_to_real}") # Output:

Complex to real part conversion: 2.0

OUTPUT

Integer: 42

Float: 3.14159

Complex Number: (2+3j)

Addition of integer and float: 45.14159

Subtraction of integer from float: -38.85841

Multiplication of integer and float: 131.8818

Division of float by integer: 0.07478095238095238

Real part of complex number: 2.0

Imaginary part of complex number: 3.0

Complex conjugate: (2-3j)

Magnitude of complex number: 3.605551275463989

Float to integer conversion: 3

Integer to float conversion: 42.0

Complex to real part conversion: 2.0

CHARACTER SET

Python Character Set Character set is the set of valid characters that a

language can recognize. A character represents any letter, digit or any other symbol.

Python has the following character sets: Letters – A to Z, a to z Digits – 0 to 9 Special

Symbols - + - * / etc. Whitespaces – Blank Space, tab, carriage return, newline, form

feed Other characters – Python can process all ASCII and Unicode characters as part

of data or literals.

Python Code: Character Set Handling

--------------------- Character Set Handling ---------------------

Define a string with various characters

original_string = "Hello, World! 😊"

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

24 Periyar University – CDOE| Self-Learning Material

print("Original String:")

print(original_string) # Output: Hello, World! 😊

Encode the string to bytes using UTF-8 encoding

encoded_bytes = original_string.encode('utf-8')

print("\nEncoded Bytes (UTF-8):")

print(encoded_bytes) # Output: b'Hello, World! \xf0\x9f\x98\x8a'

Decode the bytes back to a string

decoded_string = encoded_bytes.decode('utf-8')

print("\nDecoded String:")

print(decoded_string) # Output: Hello, World! 😊

Encode the string to bytes using ASCII encoding (will fail for non-ASCII

characters)

try:

 ascii_encoded_bytes = original_string.encode('ascii')

except UnicodeEncodeError as e:

 print("\nEncoding Error (ASCII):")

 print(e) # Output: 'ascii' codec can't encode character...

Encode a string with only ASCII characters

ascii_string = "Hello, World!"

ascii_encoded_bytes = ascii_string.encode('ascii')

print("\nASCII Encoded Bytes:")

print(ascii_encoded_bytes) # Output: b'Hello, World!'

Decode the ASCII encoded bytes back to a string

ascii_decoded_string = ascii_encoded_bytes.decode('ascii')

print("\nASCII Decoded String:")

print(ascii_decoded_string) # Output: Hello, World!

Handling character sets in different languages

Example: Japanese characters

japanese_string = "こんにちは世界" # "Hello, World" in Japanese

print("\nJapanese String:")

print(japanese_string) # Output: こんにちは世界

Encode the Japanese string to bytes using UTF-8

japanese_encoded_bytes = japanese_string.encode('utf-8')

print("\nJapanese Encoded Bytes (UTF-8):")

print(japanese_encoded_bytes) # Output:

b'\xe3\x81\x93\xe0\xa4\xbf\xe0\xa4\xa8\xe3\x81\xaf\xe4\xb8\x96\xe7\x95\x8c'

Decode the Japanese bytes back to a string

japanese_decoded_string = japanese_encoded_bytes.decode('utf-8')

print("\nJapanese Decoded String:")

print(japanese_decoded_string) # Output: こんにちは世界

OUTPUT

Original String:

Hello, World! 😊

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

25 Periyar University – CDOE| Self-Learning Material

Encoded Bytes (UTF-8):

b'Hello, World! \xf0\x9f\x98\x8a'

Decoded String:

Hello, World! 😊

Encoding Error (ASCII):

'ascii' codec can't encode character ...

ASCII Encoded Bytes:

b'Hello, World!'

ASCII Decoded String:

Hello, World!

Japanese String:

こんにちは世界

Japanese Encoded Bytes (UTF-8):

b'\xe3\x81\x93\xe0\xa4\xbf\xe0\xa4\xa8\xe3\x81\xaf\xe4\xb8\x96\xe7\x95\x8c'

Japanese Decoded String:

こんにちは世界

1.1.3 EXPRESSION

An expression is a combination of values, variables, operators, and function

calls that evaluates to a single value. Expressions are fundamental in Python, and they

can be used to perform calculations, comparisons, or logical operations.

Types of Expressions:

1. Arithmetic Expressions: Involves mathematical operations like addition,

subtraction, multiplication, division, etc.

2. Relational Expressions: Compares values and returns a Boolean (True or

False).

3. Logical Expressions: Combines multiple relational expressions using logical

operators (and, or, not).

4. Bitwise Expressions: Operate at the bit level, such as AND, OR, XOR, shifts,

etc.

5. Lambda Expressions: Used to create small anonymous functions.

6. Compound Expressions: Combine multiple types of expressions.

Python Program Demonstrating Different Expressions:

1. Arithmetic Expressions

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

26 Periyar University – CDOE| Self-Learning Material

a = 10

b = 5

c = 3

sum_result = a + b # Addition

difference = a - b # Subtraction

product = a * b # Multiplication

quotient = a / b # Division

modulus = a % b # Modulo

exponent = a ** c # Exponentiation

print("Arithmetic Expressions:")

print("Sum:", sum_result) # Output: 15

print("Difference:", difference) # Output: 5

print("Product:", product) # Output: 50

print("Quotient:", quotient) # Output: 2.0

print("Modulus:", modulus) # Output: 0

print("Exponentiation:", exponent) # Output: 1000

2. Relational Expressions

greater = a > b # Greater than

less = a < c # Less than

equal = a == 10 # Equal to

not_equal = b != c # Not equal to

print("\nRelational Expressions:")

print("a > b:", greater) # Output: True

print("a < c:", less) # Output: False

print("a == 10:", equal) # Output: True

print("b != c:", not_equal) # Output: True

3. Logical Expressions

logical_and = (a > b) and (b > c) # Both conditions are True

logical_or = (a > b) or (b < c) # One condition is True

logical_not = not (a == b) # Negates the result

print("\nLogical Expressions:")

print("a > b and b > c:", logical_and) # Output: True

print("a > b or b < c:", logical_or) # Output: True

print("not (a == b):", logical_not) # Output: True

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

27 Periyar University – CDOE| Self-Learning Material

4. Bitwise Expressions

bitwise_and = a & b # Bitwise AND

bitwise_or = a | b # Bitwise OR

bitwise_xor = a ^ b # Bitwise XOR

bitwise_shift_left = a << 1 # Shift left

bitwise_shift_right = a >> 1 # Shift right

print("\nBitwise Expressions:")

print("Bitwise AND (a & b):", bitwise_and) # Output: 0

print("Bitwise OR (a | b):", bitwise_or) # Output: 15

print("Bitwise XOR (a ^ b):", bitwise_xor) # Output: 15

print("Shift left (a << 1):", bitwise_shift_left) # Output: 20

print("Shift right (a >> 1):", bitwise_shift_right) # Output: 5

5. Lambda Expressions

square = lambda x: x * x

double = lambda x: x * 2

print("\nLambda Expressions:")

print("Square of 5:", square(5)) # Output: 25

print("Double of 5:", double(5)) # Output: 10

6. Compound Expressions

compound_expression = (a + b) * (b - c) / (a % c)

print("\nCompound Expression:")

print("Result of compound expression:", compound_expression) # Output: 10.0

Output:

Arithmetic Expressions:

Sum: 15

Difference: 5

Product: 50

Quotient: 2.0

Modulus: 0

Exponentiation: 1000

Relational Expressions:

a > b: True

a < c: False

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

28 Periyar University – CDOE| Self-Learning Material

a == 10: True

b != c: True

Logical Expressions:

a > b and b > c: True

a > b or b < c: True

not (a == b): True

Bitwise Expressions:

Bitwise AND (a & b): 0

Bitwise OR (a | b): 15

Bitwise XOR (a ^ b): 15

Shift left (a << 1): 20

Shift right (a >> 1): 5

Lambda Expressions:

Square of 5: 25

Double of 5: 10

Compound Expression:

Result of compound expression: 10.0

Let Us Sum Up

In this introductory unit, students will explore the fundamental concepts of

computer science, starting with an understanding of strings, assignment statements,

and comments. They will delve into the various numeric data types and character sets

that form the foundation of data representation in computing. The unit will cover the

construction and evaluation of expressions, providing students with essential skills for

performing calculations and data manipulation. By the end of this unit, students will

have a solid grasp of these basic yet crucial elements, forming a strong base for more

advanced topics in computer science.

Check Your Progress

1. What is the primary purpose of using comments in a program?

A) To increase the execution speed of the program.

B) To provide explanations or annotations in the code for human

readers.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

29 Periyar University – CDOE| Self-Learning Material

C) To define variables.

D) To execute a block of code conditionally.

2. Which of the following is a valid string in Python?

A) 'Hello, World!'

B) 12345

C) True

D) 3.14

3. Which of the following data types is used to store decimal numbers in Python?

A) int

B) str

C) float

D) bool

4. In Python, what character is used to begin a single-line comment?

A) //

B) *

C) #

D) <!--

5. What is the purpose of an assignment statement in Python?

A) To compare two values.

B) To print values to the console.

C) To assign a value to a variable.

D) To iterate through a sequence.

6. Which of the following is a numeric data type in Python?

A) list

B) tuple

C) int

D) dict

7. What does the following Python code do? x = 5

A) It declares a function named x.

B) It assigns the value 5 to the variable x.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

30 Periyar University – CDOE| Self-Learning Material

C) It prints the value 5.

D) It compares x with 5.

8. Which of the following character sets is used to represent text in Python?

A) Unicode

B) Binary

C) Hexadecimal

D) Octal

9. Which of the following is an example of an expression in Python?

A) x = 10

B) print("Hello, World!")

C) a + b * c

D) for i in range(5):

10. Which numeric data type would you use to represent the number of students

in a class?

A) int

B) float

C) str

D) bool

11. Which function is used to convert a string into an integer in Python?

A) str()

B) int()

C) float()

D) bool()

12. What will be the result of the following expression: 3 + 2 * 5?

A) 25

B) 13

C) 10

D) 15

13. How do you denote a string in Python?

A) Using single or double quotes.

B) Using parentheses.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

31 Periyar University – CDOE| Self-Learning Material

C) Using square brackets.

D) Using curly braces.

14. Which of the following is a correct variable name in Python?

A) 1st_var

B) var-1

C) _var1

D) var@1

15. What does the len() function do?

A) Calculates the length of a string.

B) Converts a string to lowercase.

C) Replaces characters in a string.

D) Joins two strings together.

16. Which of the following is not a numeric data type in Python?

A) int

B) float

C) complex

D) string

17. Which symbol is used for exponentiation in Python?

A) ^

B) **

C) *

D) //

18. What will be the result of the following code: print("Hello" + "World")?

A) Hello World

B) HelloWorld

C) "Hello" "World"

D) Error

19. Which method is used to convert all characters of a string to uppercase?

A) upper()

B) capitalize()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

32 Periyar University – CDOE| Self-Learning Material

C) title()

D) uppercase()

20. How can you include a newline character in a string in Python?

A) \n

B) \\n

C) /n

D) \newline

21. Which keyword is used to create a function in Python?

A) function

B) define

C) def

D) func

22. Which of the following is a valid Boolean value in Python?

A) TRUE

B) true

C) False

D) 1

23. What will be the output of print(2 ** 3)?

A) 6

B) 8

C) 9

D) 23

24. Which of the following is used to create a comment in Python?

A) # This is a comment

B) /* This is a comment */

C) // This is a comment

D) <!-- This is a comment -->

25. How do you create a multi-line string in Python?

A) Using double quotes ""

B) Using triple quotes """ or '''

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

33 Periyar University – CDOE| Self-Learning Material

C) Using parentheses ()

D) Using square brackets []

26. Which function can be used to get the ASCII value of a character in Python?

A) ord()

B) char()

C) ascii()

D) chr()

27. What is the correct syntax to output the type of a variable or object in Python?

A) print(typeOf(x))

B) print(typeof(x))

C) print(type(x))

D) print(class(x))

28. What will the following code output? print("10" + "5")

A) 15

B) 105

C) 10 5

D) Error

29. Which method would you use to remove whitespace from the beginning and

end of a string?

A) strip()

B) trim()

C) rstrip()

D) ltrim()

30. Which of the following is used to concatenate two strings in Python?

A) &

B) +

C) *

D) –

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

34 Periyar University – CDOE| Self-Learning Material

SECTION 1.2 LOOPS AND SLECTION STATEMENTA

1.1.3 Loops and Selection Statements

 In Python, expressions are combinations of values, variables, operators, and

function calls that evaluate to a single value. Expressions are the building blocks of

Python code and are used to perform computations, manipulate data, and make

decisions. Here's a breakdown of different types of expressions in Python:

Numeric Expressions:

Numeric expressions involve arithmetic operations on numeric values such as

integers, floats, and complex numbers.

Addition

result = 10 + 5

Subtraction

result = 10 - 5

Multiplication

result = 10 * 5

Division

result = 10 / 5

Floor Division (returns the integer part of the division)

result = 10 // 5

Modulus (returns the remainder of the division)

 result = 10 % 3

Exponentiation

result = 10 ** 3

Boolean Expressions:

Boolean expressions evaluate to either True or False and are typically used in

conditions and control flow statements.

Comparison Operators

result = 10 > 5

result = 10 == 5

result = 10 != 5

result = 10 <= 5

result = 10 >= 5

Logical Operators

result = (10 > 5) and (5 < 3)

result = (10 > 5) or (5 < 3)

result = not (10 > 5)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

35 Periyar University – CDOE| Self-Learning Material

String Expressions:

String expressions involve operations on string values such as concatenation,

slicing, and formatting.

Concatenation

result = "Hello" + " " + "World"

String Repetition

result = "Python" * 3

String Length

result = len("Python")

String Slicing

s = "Python"

result = s [1:4] # Returns "yth"

String Formatting

name = "Alice"

age = 30

result = f"My name is {name} and I am {age} years old."

Function Call Expressions:

Function call expressions involve calling functions with arguments and optionally

capturing their return values.

Built-in Functions

result = max (10, 5, 8) # Returns the maximum value among the

arguments

result = abs (-10) # Returns the absolute value

User-defined Functions

def square(x):

 return x ** 2

result = square (5)

Attribute Access Expressions:

Attribute access expressions involve accessing attributes or methods of

objects.

Attribute Access

result = "Python”. Upper () # Returns "PYTHON"

result = [1, 2, 3]. append(4) # Modifies the list to [1, 2, 3, 4]

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

36 Periyar University – CDOE| Self-Learning Material

List and Dictionary Expressions:

List and dictionary expressions involve creating and manipulating lists and

dictionaries using comprehensions or literals.

List Comprehension

squares = [x ** 2 for x in range (5)] # Generates [0, 1, 4, 9, 16]

Dictionary Comprehension

squares_dict = {x: x ** 2 for x in range (5)} # Generates {0: 0, 1: 1, 2: 4, 3: 9, 4: 16}

Lambda Expressions:

Lambda expressions are anonymous functions that can have any number of

arguments but only one expression.

square = lambda x: x ** 2

result = square (5) # Returns 25

These are some of the common types of expressions in Python.

1.2.1 – DEFINE ITERATION

Types of Loops:

1. for Loop: Iterates over a sequence (like a list, tuple, or string).

2. while Loop: Repeats as long as a given condition is True.

Selection Statements (Conditional Statements):

1. if statement: Executes a block of code if a condition is True.

2. if-else statement: Executes one block of code if the condition is True and

another block if it's False.

3. if-elif-else statement: Checks multiple conditions in sequence and executes

the first True block.

Example 1: Using a for loop with an if-else statement

numbers = [1, 2, 3, 4, 5]

print("For loop with if-else:")

for num in numbers:

 if num % 2 == 0:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

37 Periyar University – CDOE| Self-Learning Material

 print(f"{num} is even")

 else:

 print(f"{num} is odd")

Example 2: Using a while loop with an if-elif-else statement

print("\nWhile loop with if-elif-else:")

counter = 0

while counter < 5:

 if counter == 0:

 print("Counter is zero")

 elif counter < 3:

 print(f"Counter is {counter}, less than 3")

 else:

 print(f"Counter is {counter}, greater than or equal to 3")

 counter += 1

Example 3: Using a nested for loop with a break statement

print("\nNested for loop with break:")

for i in range(3):

 for j in range(3):

 if i == j:

 print(f"Breaking out of inner loop when i = {i} and j = {j}")

 break # Exit the inner loop

 print(f"i = {i}, j = {j}")

Example 4: Using a while loop with a continue statement

print("\nWhile loop with continue:")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

38 Periyar University – CDOE| Self-Learning Material

count = 0

while count < 5:

 count += 1

 if count == 3:

 print("Skipping 3")

 continue # Skip the rest of the loop for this iteration

 print(f"Count is {count}")

Example 5: Iterating over a dictionary using a for loop

print("\nIterating over a dictionary:")

my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'}

for key, value in my_dict.items():

 print(f"{key}: {value}")

OUTPUT

For loop with if-else:

1 is odd

2 is even

3 is odd

4 is even

5 is odd

While loop with if-elif-else:

Counter is zero

Counter is 1, less than 3

Counter is 2, less than 3

Counter is 3, greater than or equal to 3

Counter is 4, greater than or equal to 4

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

39 Periyar University – CDOE| Self-Learning Material

Nested for loop with break:

i = 0, j = 1

i = 0, j = 2

Breaking out of inner loop when i = 1 and j = 1

i = 2, j = 0

Breaking out of inner loop when i = 2 and j = 2

While loop with continue:

Count is 1

Count is 2

Skipping 3

Count is 4

Count is 5

Iterating over a dictionary:

name: Alice

age: 25

city: New York

1.2.2 – FOR LOOP

A for loop is used to iterate over a sequence (such as a list, tuple, string, or

range) or any other inerrable object. It allows you to execute a block of code repeatedly

for each item in the sequence.

The basic syntax of a for loop in Python is as follows:

for item in iterable:

 # Code to be executed for each item

 item is a variable that represents each individual element in the sequence

during each iteration of the loop.

 inerrable is the sequence or inerrable object that the loop iterates over.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

40 Periyar University – CDOE| Self-Learning Material

Examples:

1. Iterating over a List:

fruits = ["apple", "banana", "cherry"]

for fruit in fruits:

 print(fruit)

Output:

apple

banana

cherry

2. Iterating over a String:

for char in "Python":

 print(char)

Output:

P

y

t

h

o

n

3. Iterating over a Range:

for i in range (5):

 print(i)

Output:

0

1

2

3

4

4. Using enumerate to Access Index and Item:

fruits = ["apple", "banana", "cherry"]

for index, fruit in enumerate(fruits):

 print (f"Index: {index}, Fruit: {fruit}")

Output:

Index: 0, Fruit: apple

Index: 1, Fruit: banana

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

41 Periyar University – CDOE| Self-Learning Material

Index: 2, Fruit: cherry

5. Using zip to Iterate Over Multiple Lists:

names = ["Alice", "Bob", "Charlie"]

ages = [30, 25, 35]

for name, age in zip(names, ages):

 print (f"Name: {name}, Age: {age}")

Output:

Name: Alice, Age: 30

Name: Bob, Age: 25

Name: Charlie, Age: 35

1.2.3 – SELECTION : OF AND IF-ELSE STATEMENTS

Selection statements, also known as conditional statements, are used to control

the flow of the program based on certain conditions. The two primary selection

statements in Python are:

1. if Statement

The if statement is used to execute a block of code only if a specified condition

is true.

Syntax:

if condition:

 # Code to be executed if the condition is true

2. if...else Statement

The if...else statement is used to execute one block of code if the condition is

true and another block of code if the condition is false.

Syntax:

if condition:

 # Code to be executed if the condition is true

else:

 # Code to be executed if the condition is false

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

42 Periyar University – CDOE| Self-Learning Material

3. if...elif...else Statement

 The if...elif...else statement is used when there are multiple conditions to be

checked.

Syntax:

if condition1:

 # Code to be executed if condition1 is true

elif condition2:

 # Code to be executed if condition1 is false and condition2 is true

else:

 # Code to be executed if both condition1 and condition2 are false

Nested if Statements

if statements inside other if statements, known as nested if statements.

Example: if Statement

print("Example 1: if Statement")

num1 = 10

if num1 > 5:

 print(f"{num1} is greater than 5.") # Output: 10 is greater than 5

print()

Example: if...else Statement

print("Example 2: if...else Statement")

num2 = 3

if num2 > 5:

 print(f"{num2} is greater than 5.")

else:

 print(f"{num2} is less than or equal to 5.") # Output: 3 is less than or equal

to 5

print()

Example: if...elif...else Statement

print("Example 3: if...elif...else Statement")

num3 = 7

if num3 > 10:

 print(f"{num3} is greater than 10.")

elif num3 == 7:

 print(f"{num3} is exactly 7.") # Output: 7 is exactly 7

else:

 print(f"{num3} is less than 7.")

print()

Example: Nested if Statement

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

43 Periyar University – CDOE| Self-Learning Material

print("Example 4: Nested if Statements")

num4 = 15

if num4 > 10:

 print(f"{num4} is greater than 10.") # Output: 15 is greater than 10

 if num4 % 2 == 0:

 print(f"{num4} is even.")

 else:

 print(f"{num4} is odd.") # Output: 15 is odd

else:

 print(f"{num4} is 10 or less.")

OUTPUT

Example 1: if Statement

10 is greater than 5.

Example 2: if...else Statement

3 is less than or equal to 5.

Example 3: if...elif...else Statement

7 is exactly 7.

Example 4: Nested if Statements

15 is greater than 10.

15 is odd.

Loop Control Statements

1. break Statement:

The break statement is used to exit the loop prematurely.

2. continue Statement:

The continue statement is used to skip the current iteration and continue with

the next iteration of the loop.

for loops are versatile and widely used in Python for iterating over collections,

performing repetitive tasks, and implementing various algorithms.

OUTPUT

Example: break statement

print("Example 1: break Statement")

for num in range(1, 11):

 if num == 6:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

44 Periyar University – CDOE| Self-Learning Material

 print("Loop breaks at number 6.")

 break # Exits the loop when num equals 6

 print(num) # Prints numbers from 1 to 5

print()

Example: continue statement

print("Example 2: continue Statement")

for num in range(1, 11):

 if num == 6:

 print("Skipping number 6.")

 continue # Skips the rest of the loop when num equals 6

 print(num) # Prints numbers except 6

1.2.4 – CONDITIONAL ITERATION : THE While Loop

A while loop is used to repeatedly execute a block of code as long as a specified

condition is true. It continues to execute the block of code until the condition becomes

false.

The basic syntax of a while loop in Python is as follows:

while condition:

 # Code to be executed as long as the condition is true

 condition is a Boolean expression that determines whether the loop should

continue or not.

 The block of code under the while loop is executed repeatedly until the condition

becomes false.

Example:

count = 0

while count < 5:

 print(count)

 count += 1

Output:

0

1

2

3

4

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

45 Periyar University – CDOE| Self-Learning Material

In this example, the loop continues to execute as long as the condition count <

5 is true. The value of count starts from 0, and it is incremented by 1 in each iteration.

When count becomes 5, the condition becomes false, and the loop terminates.

Infinite Loop:

Be cautious while using while loops to avoid creating an infinite loop, where the

condition never becomes false. An infinite loop can cause your program to hang or

become unresponsive.

Infinite loop

while True:

 print ("This is an infinite loop!")

To break out of an infinite loop, you can use a loop control statement like break, as

shown below:

while True:

 response = input ("Enter 'quit' to exit: ")

 if response == 'quit':

 break

 print ("You entered:", response)

In this example, the loop continues indefinitely until the user enters "quit". Once the

user enters "quit", the break statement is executed, and the loop terminates.

While loops are useful when you want to execute a block of code repeatedly

until a certain condition is met. However, be careful to ensure that the condition

eventually becomes false to avoid infinite loops.

1.2.5– PLAYERS IN FINANCIAL SERVICES SECTOR

To incorporate selection, control, and loop statements while identifying

players in the Financial Services sector, we can create a Python program that retrieves

company data, applies conditions (selection), and uses loops to process multiple

tickers. We'll use control structures (if-else, while, and for) along with the yfinance

library.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

46 Periyar University – CDOE| Self-Learning Material

Below is an example code that demonstrates the use of selection, control, and loop

statements:

import yfinance as yf

import pandas as pd

List of sample tickers from different sectors (some financial, some non-
financial)

tickers = ['JPM', 'AAPL', 'BAC', 'GS', 'GOOG', 'WFC', 'MS', 'TSLA', 'V']

Function to get sector information for the financial services sector using loops
and control statements

def get_financial_sector_players(tickers):

 data = []

 count = 0 # Initialize a counter to control the number of processed companies

 for ticker in tickers: # for loop to iterate over all tickers

 count += 1

 print(f"\nProcessing {count}/{len(tickers)}: {ticker}")

 stock = yf.Ticker(ticker)

 info = stock.info

 # Selection control using if-else statements to check if the sector is
Financial Services

 if 'sector' in info:

 if info['sector'] == 'Financial Services': # Filter by Financial Services
sector

 print(f"-> {info['longName']} is in the Financial Services sector.")

 data.append({

 'Company': info.get('longName'),

 'Ticker': ticker,

 'Sector': info.get('sector'),

 'Industry': info.get('industry'),

 'Market Cap': info.get('marketCap')

 })

 else:

 print(f"-> {info['longName']} is NOT in the Financial Services sector.")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

47 Periyar University – CDOE| Self-Learning Material

 else:

 print(f"-> No sector data found for {ticker}")

 # Control structure to limit processing to the first 5 companies (using
break)

 if count >= 5:

 print("Processed 5 companies, stopping further processing.")

 break # Exit the loop after processing 5 companies

 return pd.DataFrame(data)

While loop demonstration: retry if no data

attempts = 0

max_attempts = 3

while attempts < max_attempts:

 try:

 # Get financial sector players

 print(f"Attempt {attempts + 1}/{max_attempts}: Fetching company data")

 df = get_financial_sector_players(tickers)

 if not df.empty:

 print("\nFinancial Services Sector Players:")

 print(df)

 else:

 print("\nNo financial companies found.")

 break # Exit the loop if successful

 except Exception as e:

 print(f"Error occurred: {e}")

 attempts += 1

 if attempts == max_attempts:

 print("Max attempts reached. Exiting program.")

 else:

 print("Retrying...\n")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

48 Periyar University – CDOE| Self-Learning Material

OUTPUT

Attempt 1/3: Fetching company data

Processing 1/9: JPM

-> JPMorgan Chase & Co. is in the Financial Services sector.

Processing 2/9: AAPL

-> Apple Inc. is NOT in the Financial Services sector.

Processing 3/9: BAC

-> Bank of America Corporation is in the Financial Services sector.

Processing 4/9: GS

-> Goldman Sachs Group, Inc. is in the Financial Services sector.

Processing 5/9: GOOG

-> Alphabet Inc. is NOT in the Financial Services sector.

Processed 5 companies, stopping further processing.

Financial Services Sector Players:

 Company Ticker Sector Industry Market Cap

0 JPMorgan Chase & Co. JPM Financial Services Banks—Diversified

476542734500

1 Bank of America Corporation BAC Financial Services Banks—Diversified

330700765500

2 Goldman Sachs Group, Inc. GS Financial Services Capital Markets

115450726000

 Let Us Sum Up

This delves into the fundamental control structures in Python, focusing on

expressions, loops, and selection statements. Students will explore definite iteration

using the for loop, which allows repeated execution of a block of code for a specified

number of times or over a sequence. The unit will also cover selection statements

such as if and if-else, enabling the execution of code based on specific conditions.

Additionally, conditional iteration with the while loop will be introduced, allowing code

to repeat as long as a certain condition is true. These concepts are essential for

creating dynamic and responsive programs, enabling more complex and versatile

coding solutions.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

49 Periyar University – CDOE| Self-Learning Material

Check Your Progress

1. What does a for loop in Python typically iterate over?

A) Integers only

B) Strings only

C) Lists, tuples, dictionaries, and ranges

D) Floating-point numbers

2. What is the correct syntax for a for loop in Python?

A) for (i = 0; i < 10; i++)

B) for i in range(10):

C) foreach i in range(10)

D) for i to 10:

3. Which statement is used to terminate a loop prematurely in Python?

A) continue

B) exit

C) break

D) stop

4. What will the following code print? for i in range(3): print(i)

A) 1 2 3

B) 0 1 2

C) 0 1 2 3

D) 1 2

5. Which of the following keywords is used for selection statements in Python?

A) select

B) switch

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

50 Periyar University – CDOE| Self-Learning Material

C) if

D) choice

6. What is the output of the following code? if 5 > 3: print("Hello")

A) Hello

B) Nothing

C) Error

D) 5 > 3

7. Which of the following is correct syntax for an if-else statement in Python?

A) if x > y: print("x is greater") else: print("y is greater")

B) if (x > y) { print("x is greater"); } else { print("y is greater"); }

C) if x > y print "x is greater" else print "y is greater"

D) if x > y: print("x is greater") else: print("y is greater")

8. Which loop would you use for conditional iteration in Python?

A) for

B) while

C) do-while

D) foreach

9. What does the following code do? while x < 10: print(x) x += 1

A) Prints numbers from 1 to 10

B) Prints numbers from 0 to 9

C) Causes an infinite loop

D) Syntax error

10. How do you skip the current iteration in a loop and proceed to the next one?

A) break

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

51 Periyar University – CDOE| Self-Learning Material

B) continue

C) skip

D) pass

11. What will be the output of the following code? for i in range(2): for j in range(2):

print(i, j)

A) (0, 1) (0, 2) (1, 1) (1, 2)

B) (0, 0) (0, 1) (1, 0) (1, 1)

C) (1, 0) (2, 0) (1, 1) (2, 1)

D) (1, 1) (2, 2) (1, 2) (2, 1)

12. What is the result of if not (4 == 4): print("No") else: print("Yes")?

A) No

B) Yes

C) Error

D) Nothing

13. Which of the following is a valid while loop?

A) while x: print(x)

B) while (x): print(x)

C) while x == 5: print(x)

D) while (x == 5) { print(x); }

14. What does the following code print? if 3 < 2: print("A") elif 3 == 3: print("B") else:

print("C")

A) A

B) B

C) C

D) Nothing

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

52 Periyar University – CDOE| Self-Learning Material

15. What is the output of the following code? for i in range(5): if i == 3: break print(i)

A) 0 1 2 3 4

B) 0 1 2 3

C) 0 1 2

D) 1 2 3

16. How would you write a for loop to iterate over each character in a string s?

A) for c in s:

B) for each c in s:

C) foreach c in s:

D) for c to s:

17. Which of the following statements is true about the else clause in a loop?

A) It executes only if the loop terminates normally without a break.

B) It executes only if the loop contains a continue.

C) It executes only if the loop is infinite.

D) It executes before the loop starts.

18. What will the following code output? x = 0 while x < 3: x += 1 print(x)

A) 1 2 3

B) 0 1 2

C) 1 2

D) 0 1 2 3

19. Which of the following is a correct syntax for an infinite loop using while?

A) while (true):

B) while True:

C) while (1):

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

53 Periyar University – CDOE| Self-Learning Material

D) while (True):

20. What does the pass statement do in a loop?

A) Terminates the loop.

B) Skips the current iteration and continues with the next.

C) Does nothing and continues to the next statement.

D) Causes a syntax error.

21. Which keyword is used to check multiple conditions in an if statement?

A) elif

B) elseif

C) else

D) elseif

22. What is the output of the following code? for i in range(3): if i == 1: continue

print(i)

A) 0 1 2

B) 0 1

C) 0 2

D) 1 2

23. Which statement is used to execute a block of code only if a specified condition

is false?

A) if

B) else

C) elif

D) unless

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

54 Periyar University – CDOE| Self-Learning Material

24. What will be the output of the following code? x = 5 if x > 2: print("Greater")

else: print("Smaller")

A) Greater

B) Smaller

C) 5

D) Error

25. Which of the following can be used to combine multiple conditions in an if

statement?

A) and, or

B) plus, minus

C) & , |

D) add, subtract

26. What will be the output of the following code? count = 0 while count < 3:

print("looping") count += 1

A) looping

B) looping looping looping

C) looping 0 looping 1 looping 2

D) looping 1 looping 2 looping 3

27. Which of the following statements is used to exit a loop?

A) exit

B) stop

C) break

D) finish

28. What does the following code do? for i in range(5): if i == 2: break else: print(i)

A) Prints 0, 1, 2

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

55 Periyar University – CDOE| Self-Learning Material

B) Prints 0, 1

C) Prints 0, 1, 3, 4

D) Causes an error

29. Which of the following is true about if-else statements in Python?

A) else must always follow an if or elif block.

B) if can exist without else.

C) elif can be used without if.

D) else can exist without if.

30. What will the output of this code be? for i in range(4): print(i) else: print("Done")

A) 0 1 2 3 Done

B) 0 1 2 3

C) Done

D) Error

Unit Summary

This unit covers fundamental concepts in computer science, focusing on basic

programming constructs and data types. It begins with an introduction to strings,

assignments, and comments, essential for documenting and structuring code.

Numeric data types and character sets are discussed, highlighting how different types

of data are represented and manipulated. The unit explores expressions and

operators, providing the tools to perform calculations and logic operations. Loop

constructs such as the for loop for definite iteration and the while loop for conditional

iteration are introduced, allowing for repetitive tasks and complex flow control.

Selection statements, including if and if-else, are covered to facilitate decision-making

in programs. Overall, this unit lays a solid foundation for understanding and writing

basic programs.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

56 Periyar University – CDOE| Self-Learning Material

Glossary

 String: A sequence of characters used to represent text in programming.

Enclosed in quotes (' or ").

 Assignment: The process of assigning a value to a variable using the =

operator.

 Comment: A non-executable statement in code, used for documentation. In

Python, comments start with #.

 Numeric Data Types: Data types that represent numbers. Common types

include int (integers) and float (floating-point numbers).

 Character Set: A set of characters recognized by the computer, including

letters, digits, and symbols. ASCII and Unicode are common character sets.

 Expression: A combination of variables, operators, and values that yields a

result value.

 Operator: A symbol that performs operations on variables and values.

Examples include +, -, *, /, and **.

 For Loop: A control flow statement for definite iteration, executing a block of

code a specific number of times.

 While Loop: A control flow statement for conditional iteration, executing a block

of code as long as a condition is true.

 If Statement: A selection statement that executes a block of code if a specified

condition is true.

 If-Else Statement: A selection statement that executes one block of code if a

condition is true and another block if the condition is false.

 Elif: Short for "else if," used in Python to check multiple conditions in sequence.

 Break: A statement used to exit a loop prematurely.

 Continue: A statement used to skip the rest of the current iteration of a loop

and proceed to the next iteration.

 Range(): A function that generates a sequence of numbers, commonly used in

for loops.

 Len(): A function that returns the length of a string, list, tuple, or other

collections.

 Ord(): A function that returns the ASCII value of a character.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

57 Periyar University – CDOE| Self-Learning Material

 Str(): A function that converts a value to a string representation.

Self Assessment Questions

1. Evaluate the importance of comments in programming and explain how they

contribute to code readability and maintainability.

2. Analyze the role of strings in Python programming and compare the usage of

single quotes and double quotes for string declaration.

3. Assess the significance of assignment statements in Python and illustrate with

examples how variables are initialized and assigned values.

4. Compare and contrast the main numeric data types in Python, analyzing their

characteristics and use cases.

5. Evaluate the purpose of expressions in Python and explain how they are used

to perform computations and evaluate conditions.

6. Analyze the syntax and functionality of the for loop in Python, comparing it with

other iterative constructs.

7. Assess the effectiveness of selection statements (if and if-else) in Python for

making decisions based on conditional expressions.

8. Compare the use of the while loop and the for loop in Python, evaluating their

strengths and limitations in different scenarios.

9. Evaluate the significance of definite iteration using the for loop and explain how

it differs from conditional iteration with the while loop.

10. Assess the effectiveness of using comments to document Python code and

compare different commenting styles for clarity and readability.

11. Analyze the role of numeric data types and character sets in Python

programming, illustrating their importance in data manipulation and

representation.

12. Evaluate the impact of expressions on program efficiency and performance,

comparing simple arithmetic operations with complex expressions.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

58 Periyar University – CDOE| Self-Learning Material

Activities / Exercises / Case Studies

Activities

1. Create a Python script that prompts the user for their first name and last name,

then prints a greeting message that includes both names in uppercase.

2. Write a Python program to count the number of vowels in a given string.

3. Take a simple Python script and add comments explaining each line of code.

Ensure that the comments describe the purpose and functionality of the code.

4. Write a Python program that converts a temperature from Celsius to Fahrenheit

and vice versa. Use functions for the conversions and print the results.

5. Create a Python script that evaluates and prints the result of various

mathematical expressions, including addition, subtraction, multiplication,

division, and exponentiation.

Exercises

1. Write a Python program that prints the multiplication table for numbers 1

through 10 using a for loop. Modify the program to take an input number from

the user and print its multiplication table.

2. Write a Python program that checks if a given year is a leap year. Use an if-

else statement to determine and print whether the year is a leap year. Extend

the program to check if the input is a valid year.

3. Create a Python script that asks the user to guess a number between 1 and

100. Use a while loop to give the user multiple attempts to guess the number,

and provide feedback if the guess is too high or too low. Implement a counter

to track the number of attempts and display it once the user guesses the correct

number.

4. Write a Python program that prints the ASCII values of all characters from 'a' to

'z'. Modify the program to print the characters for a given range of ASCII values.

Case Studies

1. Case Study: Basic Calculator Program

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

59 Periyar University – CDOE| Self-Learning Material

 Develop a Python-based calculator that performs basic arithmetic

operations: addition, subtraction, multiplication, and division. Use functions

for each operation and include input validation.

 Add a feature to handle invalid inputs gracefully and display appropriate

error messages.

2. Case Study: Student Grade Management System

 Design a Python program that allows a teacher to input students' names

and their corresponding grades. Store the data in a dictionary and provide

functionalities to:

 Display all students and their grades.

 Calculate and display the average grade.

 Find and print the highest and lowest grades along with the respective

students' names.

 Enhance the program to allow updating and deleting student records.

3. Case Study: Simple Banking System

 Create a Python program to simulate a simple banking system. The program

should allow users to:

 Create an account with an initial balance.

 Deposit money into the account.

 Withdraw money from the account, ensuring the balance does not go

negative.

 Check the account balance.

 Implement input validation and handle edge cases such as attempting to

withdraw more money than available in the account.

Answers for check your progress

Modules S. No. Answers

Module 1

1. B) To provide explanations or annotations in the code for

human readers.

2. A) 'Hello, World!'

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

60 Periyar University – CDOE| Self-Learning Material

3. C) float

4. C) #

5. C) To assign a value to a variable.

6. C) int

7. B) It assigns the value 5 to the variable x.

8. A) Unicode

9. C) a + b * c

10. A) int

11. B) int()

12. D) 15

13. A) Using single or double quotes.

14. C) _var1

15. A) Calculates the length of a string.

16. D) string

17. B) **

18. B) HelloWorld

19. A) upper()

20. A) \n

21. C) def

22. C) False

23. B) 8

24. A) # This is a comment

25. B) Using triple quotes """ or '''

26. A) ord()

27. C) print(type(x))

28. B) 105

29. A) strip()

30. B) +

Module 2

1. C) Lists, tuples, dictionaries, and ranges

2. B) for i in range(10):

3. C) break

4. B) 0 1 2

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

61 Periyar University – CDOE| Self-Learning Material

5. C) if

6. A) Hello

7. A) if x > y: print("x is greater") else: print("y is greater")

8. B) while

9. B) Prints numbers from 0 to 9

10. B) continue

11. B) (0, 0) (0, 1) (1, 0) (1, 1)

12. D) Nothing

13. A) while x: print(x)

14. B) B

15. B) 0 1 2 3

16. A) for c in s:

17. A) It executes only if the loop terminates normally without

a break.

18. C) 1 2

19. B) while True:

20. C) Does nothing and continues to the next statement.

21. A) elif

22. B) 0 1

23. B) else

24. A) Greater

25. A) and, or

26. B) looping looping looping

27. C) break

28. B) Prints 0, 1

29. B) if can exist without else.

30. A) 0 1 2 3 Done

Suggested Readings

1. Milliken, C. P. (2019). Python projects for beginners: a ten-week bootcamp

approach to Python programming. Apress.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

62 Periyar University – CDOE| Self-Learning Material

2. Sweigart, A. (2019). Automate the boring stuff with Python: practical

programming for total beginners. no starch press.

3. Lutz, M. (2013). Learning python: Powerful object-oriented programming. "

O'Reilly Media, Inc.".

Open-Source E-Content Links

1. https://docs.python.org/3/

2. https://www.w3schools.com/python/

3. https://www.geeksforgeeks.org/python-programming-language-tutorial/

References

1. MIT OpenCourseWare: Introduction to Computer Science and Programming

Using Python

2. Coursera: Python for Everybody Specialization

3. Codecademy Python Course

https://docs.python.org/3/
https://www.w3schools.com/python/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

63 Periyar University – CDOE| Self-Learning Material

Strings and Text Files

UNIT II – STRINGS AND TEXT FILES

Unit – II: Strings and Text Files: Accessing Characters and substrings in strings

- Data encryption-Strings and Number systems- String methods - Text - Lists

and Dictionaries: Lists - Dictionaries - Design with Functions: A Quick review

- Problem Solving with top-Down Design - Design with recursive Functions -

Managing a Program’s namespace - Higher-Order Functions

Section Topic Page No.

UNIT – II

Unit Objectives

Section 2.1 Strings and Text Files 64

2.1.1 Accessing Characters and substrings in strings 65

2.1.2 Data Encryption 67

2.1.3 Strings and Number systems and String Methods 69

2.1.4 Text 75

 Let Us Sum Up 77

 Check Your Progress 77

Section 2.2 Lists and Dictionaries 80

2.2.1 Lists 80

2.2.2 Dictionaries 82

 Let Us Sum Up 86

 Check Your Progress 86

Section 2.3 Design with Functions 89

2.3.1 A Quick Review 89

2.3.2 Problem Solving with Top Down Design 90

2.3.3 Design with Recursive Functions 92

2.3.4 Managing a Program’s Namespace 94

2.3.5 Higher Order Function 95

 Let Us Sum Up 97

 Check Your Progress 97

2.4 Unit- Summary 101

2.5 Glossary 102

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

64 Periyar University – CDOE| Self-Learning Material

Unit Objective:

The course objectives encompass a comprehensive journey through Python

programming, starting with foundational understanding and gradually progressing to

advanced concepts. Students will master fundamental Python concepts, including

data types and control structures, before delving into the intricacies of string

manipulation, text file handling, and data structures like lists and dictionaries. With an

emphasis on function design and implementation, students will learn to create modular

and reusable code, essential for problem-solving in Python. Throughout the course,

problem-solving techniques will be honed through top-down design strategies,

empowering students to break down complex problems effectively. By exploring

advanced topics such as namespace management, recursion, and higher-order

functions, students will gain a deeper understanding of Python's capabilities, preparing

them for real-world programming challenges with confidence and proficiency.

SECTION 2.1: STRINGS AND TEXT FILES

In the realm of Python programming, strings and text files are foundational

elements crucial for various applications. Strings represent sequences of characters,

enabling manipulation, analysis, and presentation of textual data. Python offers robust

string manipulation capabilities, empowering developers to perform tasks like

concatenation, slicing, and formatting with ease. Additionally, text files serve as a vital

means of storing and accessing large volumes of textual data persistently. Python

provides powerful tools for reading from and writing to text files, facilitating tasks such

as data input/output operations, logging, and data storage. Mastery of string handling

and text file processing is essential for building versatile and efficient Python

applications across a wide range of domains, from data analysis and processing to

web development and beyond.

2.6 Self- Assessment Questions 103

2.7 Activities / Exercises / Case Studies 104

2.8 Answers for Check your Progress 106

2.9 References and Suggested Readings 108

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

65 Periyar University – CDOE| Self-Learning Material

2.1.1 ACCESSING CHARACTERS AND SUBSTRINGS IN STRINGS

Accessing characters and substrings in strings is a fundamental operation in

Python. Here's how you can do it:

Accessing Characters:

Access individual characters in a string using indexing. Indexing in Python starts

from 0.

s = "Hello, World!"

 # Accessing individual characters

print (s [0]) # Output: 'H'

print (s [7]) # Output: 'W'

Accessing Substrings (Slicing):

Extract substrings from a string using slicing. Slicing syntax is

string[start:end:step], where start is the starting index (inclusive), end is the ending

index (exclusive), and step is the step size (default is 1).

s = "Hello, World!"

 # Extracting substrings

print(s [7:12]) # Output: 'World'

print(s[:5]) # Output: 'Hello'

print(s[7:]) # Output: 'World!'

print(s[::2]) # Output: 'Hlo ol!'

Accessing Characters in Reverse:

Access characters in reverse order by using negative indices.

s = "Hello, Worl

 # Accessing characters in reverse

print(s[-1]) # Output: '!'

print(s[-6]) # Output: 'W'

Iterating Through Characters:

Iterate through each character in a string using a loop.

s = "Hello"

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

66 Periyar University – CDOE| Self-Learning Material

 # Iterating through characters

for char in s:

 print(char)

Length of a String:

Find the length of a string using the len() function.

s = "Hello, World!"

 # Length of the string

 print(len(s)) # Output: 13

Modifying Strings:

Strings in Python are immutable, cannot modify them in-place. However, it can

create a new string with the desired modifications.

s = "Hello, World!"

Modifying strings

modified_s = s[:5] + " Python!"

 print(modified_s) # Output: 'Hello Python!'

Working with Text Files:

To read text from a file and manipulate it as strings, use file handling in Python.

 # Reading from a text file

 with open ("example.txt", "r") as file:

 data = file.read()

PROGRAM FOR ACCESS CHARACTERS AND SUBSTRINGS IN STRINGS USING

INDEXING AND SLICING IN PYTHON:

Printing the content of the file

 print(data)

Accessing characters in a string

my_string = "Hello, World!"

Access individual characters

print("First character:", my_string[0]) # Output: 'H'

print("Eighth character:", my_string[7]) # Output: 'W'

print("Last character:", my_string[-1]) # Output: '!'

Accessing substrings using slicing

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

67 Periyar University – CDOE| Self-Learning Material

print("Substring from index 0 to 4:", my_string[0:5]) # Output: 'Hello'

print("Substring from index 7 to 11:", my_string[7:12]) # Output: 'World'

Slicing without start or end

print("Substring from start to index 4:", my_string[:5]) # Output: 'Hello'

print("Substring from index 7 to the end:", my_string[7:]) # Output: 'World!'

Step slicing

print("Every second character:", my_string[::2]) # Output: 'Hlo ol!'

Reverse the string using slicing

print("Reversed string:", my_string[::-1]) # Output: '!dlroW ,olleH'

2.1.2 DATA ENCRYPTION

In Python, data encryption involves converting plain text into a ciphertext using

encryption algorithms and keys. Python provides several libraries and modules for

data encryption, with the most commonly used one being the cryptography library.

Here's a basic overview of how you can perform data encryption in Python using this

library:

Using the cryptography Library:

1. Installation: If you haven't installed the cryptography library yet, you can do so

using pip:

pip install cryptography.

2. Symmetric Encryption (AES): Symmetric encryption uses a single key for

both encryption and decryption. AES (Advanced Encryption Standard) is one

of the most widely used symmetric encryption algorithms.

from cryptography. fernet import Fernet.

Generate a random key

key = Fernet.generate_key()

Create a Fernet symmetric encryption object with the key

cipher = Fernet(key)

Encrypting data

plaintext = b"Hello, world!"

ciphertext = cipher.encrypt(plaintext)

Decrypting data

decrypted_text = cipher.decrypt(ciphertext)

print("Plaintext:", plaintext.decode())

print("Ciphertext:", ciphertext)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

68 Periyar University – CDOE| Self-Learning Material

print("Decrypted text:", decrypted_text.decode())

3.Asymmetric Encryption (RSA): Asymmetric encryption uses a pair of public and

private keys. RSA is one of the most commonly used asymmetric encryption

algorithms.

from cryptography.hazmat.backends import default_backend

from cryptography.hazmat.primitives.asymmetric import rsa

from cryptography.hazmat.primitives import serialization

Generate RSA key pair

private_key = rsa.generate_private_key(

 public_exponent=65537,

 key_size=2048,

 backend=default_backend()

)

public_key = private_key.public_key()

Encrypting data with the public key

ciphertext = public_key.encrypt(

 b"Hello, world!",

 padding.OAEP(

 mgf=padding.MGF1(algorithm=hashes.SHA256()),

 algorithm=hashes.SHA256(),

 label=None

)

)

Decrypting data with the private key

plaintext = private_key.decrypt(

 ciphertext,

 padding.OAEP(

 mgf=padding.MGF1(algorithm=hashes.SHA256()),

 algorithm=hashes.SHA256(),

 label=None

)

)

print("Plaintext:", plaintext.decode())

print("Ciphertext:", ciphertext)

3. Hashing: While not technically encryption, hashing is commonly used to

securely store passwords and verify data integrity.

import hashlib

Hashing a string

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

69 Periyar University – CDOE| Self-Learning Material

plaintext = b"Hello, world!"

hashed = hashlib.sha256(plaintext).hexdigest()

print("Plaintext:", plaintext.decode())

print("Hashed:", hashed)

These are basic examples of data encryption in Python using the cryptography

library. Encryption is crucial for protecting sensitive information and ensuring data

confidentiality and integrity in various applications. Always ensure to use strong

encryption algorithms and keep your encryption keys secure.

2.1.3 STRINGS AND NUMBER SYSTERMS , STRING METHODS

The below Python functions are used to change the case of the strings. Let’s

look at some Python string methods with examples:

 lower(): Converts all uppercase characters in a string into lowercase.

 upper(): Converts all lowercase characters in a string into uppercase.

 title(): Convert string to title case.

 swapcase(): Swap the cases of all characters in a string.

 capitalize(): Convert the first character of a string to uppercase.

Example:

Python3 program to show the

working of upper() function

text = 'geeKs For geEkS'

upper() function to convert

string to upper case

print("\nConverted String:")

print(text.upper())

lower() function to convert

string to lower case

print("\nConverted String:")

print(text.lower())

converts the first character to

upper case and rest to lower case

print("\nConverted String:")

print(text.title())

swaps the case of all characters in the string

upper case character to lowercase and vice versa

print("\nConverted String:")

https://www.geeksforgeeks.org/python-string-lower/
https://www.geeksforgeeks.org/python-string-upper/
https://www.geeksforgeeks.org/title-in-python/
https://www.geeksforgeeks.org/python-string-swapcase/
https://www.geeksforgeeks.org/string-capitalize-python/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

70 Periyar University – CDOE| Self-Learning Material

print(text. swapcase())

convert the first character of a string to uppercase

print("\nConverted String:")

print(text.capitalize())

original string never changes

print("\nOriginal String")

print(text)

Output : Converted String:

GEEKS FOR GEEKS

Converted String:

geeks for geeks

Converted String:

Geeks For Geeks

Converted String:

GEEkS fOR GEeKs

Original String

geeKs For geEkSTime complexity: O(n) where n is the length of the string ‘text’

Auxiliary space: O(1)

List of String Methods :

Here is the list of in-built Python string methods, that you can use to perform actions

on string:

1. String capitalize() - Converts first character to Capital Letter

2.String casefold() - Converts to case folded strings

3.String center() - Pads string with specified character

4.String count() - Returns occurrences of substring in string

5.String encode() - Returns encoded string of given string

6.String endswith() - Checks if String Ends with the Specified Suffix

7.String expandtabs() - Replaces Tab character With Spaces

8.String find()- Returns the index of first occurrence of substring

9.String format() - Formats string into nicer output

10.String format_map() - Formats the String Using Dictionary

11.String index() - Returns Index of Substring

12.String isalnum() - Checks Alphanumeric Character

13.String isalpha ()- Checks if All Characters are Alphabets

14.String is decimal()- Checks Decimal Characters

15.String is digit() - Checks Digit Characters

16.String is identifier()- Checks for Valid Identifier

17.String is lower()- Checks if all Alphabets in a String are Lowercase.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

71 Periyar University – CDOE| Self-Learning Material

18.String is numeric()- Checks Numeric Characters

19.String is printable()- Checks Printable Character

20.String is space()- Checks Whitespace Characters

21.String is title ()- Checks for Title cased String.

22.String is upper() - Returns if all characters are uppercase characters.

23.String join () - Returns a Concatenated String

24.String l just () - Returns left-justified string of given width

25.String lower () - Returns lowercased string

26.String l strip ()- Removes Leading Characters

27.String make trans () - Returns a translation table.

28.String partition () - Returns a Tuple

29.String replace ()- Replaces Substring Inside

30.String r find () - Returns the Highest Index of Substring

31.String r index ()- Returns Highest Index of Substring

32.String r just () - Returns right-justified string of given width.

33.String r partition () - Returns a Tuple

34.String r split ()- Splits String from Right

35.String r strip ()- Removes Trailing Characters

36.String split () - Splits string into a list of substrings

37.String splitlines ()- Splits String at Line Boundaries

38.String starts with ()- Checks if String Starts with the Specified String

39.String strip () - Removes both leading and trailing characters.

40.String swapcase () - Swap uppercase characters to lowercase; vice versa.

41.String title ()- Returns a Title Cased String

42.String translate () - Returns mapped charactered string.

43.String upper () - Returns uppercased string

SAMPLE PROGRAM

Define a sample string

s = "hello world"

capitalize() - Converts first character to Capital Letter

print("capitalize():", s.capitalize())

casefold() - Converts to case folded strings

print("casefold():", s.casefold())

center() - Pads string with specified character

print("center():", s.center(20, '*'))

count() - Returns occurrences of substring in string

print("count('l'):", s.count('l'))

encode() - Returns encoded string of given string

print("encode():", s.encode())

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

72 Periyar University – CDOE| Self-Learning Material

endswith() - Checks if String Ends with the Specified Suffix

print("endswith('world'):", s.endswith('world'))

expandtabs() - Replaces Tab character With Spaces

print("expandtabs():", s.expandtabs(4))

find() - Returns the index of first occurrence of substring

print("find('world'):", s.find('world'))

format() - Formats string into nicer output

print("format():", "My name is {} and I am {} years old.".format("John", 30))

format_map() - Formats the String Using Dictionary

point = {'x': 4, 'y': -5}

print("format_map():", '{x} {y}'.format_map(point))

index() - Returns Index of Substring

print("index('world'):", s.index('world'))

isalnum() - Checks Alphanumeric Character

print("isalnum():", s.isalnum())

isalpha() - Checks if All Characters are Alphabets

print("isalpha():", s.isalpha())

isdecimal() - Checks Decimal Characters

print("isdecimal():", s.isdecimal())

isdigit() - Checks Digit Characters

print("isdigit():", s.isdigit())

isidentifier() - Checks for Valid Identifier

print("isidentifier():", s.isidentifier())

islower() - Checks if all Alphabets in a String are Lowercase.

print("islower():", s.islower())

isnumeric() - Checks Numeric Characters

print("isnumeric():", s.isnumeric())

isprintable() - Checks Printable Character

print("isprintable():", s.isprintable())

isspace() - Checks Whitespace Characters

print("isspace():", s.isspace())

istitle() - Checks for Title cased String.

print("istitle():", s.istitle())

isupper() - Returns if all characters are uppercase characters.

print("isupper():", s.isupper())

join() - Returns a Concatenated String

print("join():", '-'.join(s))

ljust() - Returns left-justified string of given width

print("ljust():", s.ljust(20, '*'))

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

73 Periyar University – CDOE| Self-Learning Material

lower() - Returns lowercased string

print("lower():", s.lower())

lstrip() - Removes Leading Characters

print("lstrip():", s.lstrip('he'))

maketrans() - Returns a translation table.

print("maketrans():", str.maketrans('abc', '123'))

partition() - Returns a Tuple

print("partition():", s.partition(' '))

replace() - Replaces Substring Inside

print("replace():", s.replace('world', 'python'))

rfind() - Returns the Highest Index of Substring

print("rfind('world'):", s.rfind('world'))

rindex() - Returns Highest Index of Substring

print("rindex('world'):", s.rindex('world'))

rjust() - Returns right-justified string of given width.

print("rjust():", s.rjust(20, '*'))

rpartition() - Returns a Tuple

print("rpartition():", s.rpartition(' '))

rsplit() - Splits String from Right

print("rsplit():", s.rsplit(' '))

rstrip() - Removes Trailing Characters

print("rstrip():", s.rstrip('d'))

split() - Splits string into a list of substrings

print("split():", s.split())

splitlines() - Splits String at Line Boundaries

print("splitlines():", "hello\nworld".splitlines())

startswith() - Checks if String Starts with the Specified String

print("startswith('hello'):", s.startswith('hello'))

strip() - Removes both leading and trailing characters.

print("strip():", s.strip('h'))

swapcase() - Swap uppercase characters to lowercase; vice versa.

print("swapcase():", s.swapcase())

title() - Returns a Title Cased String

print("title():", s.title())

translate() - Returns mapped charactered string.

print("translate():", s.translate(str.maketrans('aeiou', '12345')))

upper() - Returns uppercased string

print("upper():", s.upper())

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

74 Periyar University – CDOE| Self-Learning Material

OUTPUT

capitalize(): Hello world

casefold(): hello world

center(): ****hello world*****

count('l'): 3

encode(): b'hello world'

endswith('world'): True

expandtabs(): hello world

find('world'): 6

format(): My name is John and I am 30 years old.

format_map(): 4 -5

index('world'): 6

isalnum(): False

isalpha(): False

isdecimal(): False

isdigit(): False

isidentifier(): False

islower(): True

isnumeric(): False

isprintable(): True

isspace(): False

istitle(): False

isupper(): False

join(): h-e-l-l-o- -w-o-r-l-d

ljust(): hello world********

lower(): hello world

lstrip(): llo world

maketrans(): {97: 49, 98: 50, 99: 51}

partition(): ('hello', ' ', 'world')

replace(): hello python

rfind('world'): 6

rindex('world'): 6

rjust(): ********hello world

rpartition(): ('hello', ' ', 'world')

rsplit(): ['hello', 'world']

rstrip(): hello worl

split(): ['hello', 'world']

splitlines(): ['hello', 'world']

startswith('hello'): True

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

75 Periyar University – CDOE| Self-Learning Material

strip(): ello worl

swapcase(): HELLO WORLD

title(): Hello World

translate(): h2ll4 w4rld

upper(): HELLO WORLD

2.1.4 TEXT

Python Program for Text Processing:

This program demonstrates:

 Basic text operations: Finding words, counting characters, and modifying
text.

 Control structures: Loops and conditional statements to process the text

PROGRAM FOR TEXT PROCESSING

Sample text for processing

text = """

Financial services companies provide a wide range of services to individuals and

businesses, including banking, insurance, and investment management.

Some well-known companies include JPMorgan Chase, Goldman Sachs, and

Bank of America.

"""

1. Word and character counting

def text_statistics(text):

 # Removing extra spaces and splitting text into words

 words = text.split()

 num_words = len(words) # Count of words

 num_chars = len(text) # Count of characters (including spaces)

 return num_words, num_chars

2. Check if certain words are present in the text

def word_search(text, word):

 # Selection statement to check if the word is present

 if word.lower() in text.lower():

 return f"'{word}' is found in the text."

 else:

 return f"'{word}' is NOT found in the text."

3. Modify the text by replacing a word

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

76 Periyar University – CDOE| Self-Learning Material

def replace_word(text, old_word, new_word):

 modified_text = text.replace(old_word, new_word)

 return modified_text

4. Loop through the text to find the occurrence of words longer than 7 characters

def find_long_words(text):

 words = text.split()

 long_words = []

 # Using a for loop to find words longer than 7 characters

 for word in words:

 if len(word) > 7: # Selection within loop

 long_words.append(word)

 return long_words

Main program demonstrating text operations

if __name__ == "__main__":

 # Getting text statistics

 word_count, char_count = text_statistics(text)

 print(f"Word count: {word_count}, Character count: {char_count}\n")

 # Searching for specific words in the text

 word_to_search = "banking"

 print(word_search(text, word_to_search))

 # Replacing a word in the text

 old_word = "JPMorgan Chase"

 new_word = "Morgan Stanley"

 modified_text = replace_word(text, old_word, new_word)

 print(f"\nModified Text:\n{modified_text}\n")

 # Finding and displaying long words

 long_words = find_long_words(text)

 print(f"Words longer than 7 characters: {long_words}")

OUTPUT

Word count: 37, Character count: 279

'banking' is found in the text.

Modified Text:

Financial services companies provide a wide range of services to individuals and

businesses, including banking, insurance, and investment management.

Some well-known companies include Morgan Stanley, Goldman Sachs, and Bank

of America.

Words longer than 7 characters: ['Financial', 'services', 'companies', 'businesses',

'including', 'insurance', 'investment', 'management', 'well-known', 'companies',

'Goldman', 'America']

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

77 Periyar University – CDOE| Self-Learning Material

Let Us Sum Up

In this unit, we delve into the core concepts of strings and text file manipulation

in Python. Initially, we explore methods for accessing characters and substrings within

strings, essential for various string manipulation tasks. Furthermore, we discuss data

encryption techniques, highlighting the importance of secure data handling practices.

Additionally, we cover the interplay between strings and number systems, facilitating

conversions and manipulations between different numerical representations within

string contexts. Throughout the unit, we delve into a plethora of string methods,

empowering learners with the tools to manipulate and transform textual data efficiently.

Overall, this unit equips students with fundamental skills in string manipulation and

text file handling, laying a solid foundation for more advanced topics in Python

programming.

Check Your Progress

1. How do you access the first character of a string in Python?

A) s[0]

B) s[1]

C) s[-1]

D) s[first]

2. Which method in Python is used for data encryption?

A) encrypt()

B) encode()

C) decrypt()

D) cipher()

3. In Python, which method is used to convert a string to lowercase?

A) to_lower()

B) lower()

C) convert_lower()

D) casefold()

4. What is the purpose of the ord() function in Python?

A) Converts a string to uppercase

B) Converts a string to lowercase

C) Returns the Unicode code point for a character

D) Returns the ASCII value for a character

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

78 Periyar University – CDOE| Self-Learning Material

5. Which method in Python is used to check if a string contains only numeric

characters?

A) isnumeric()

B) isdigit()

C) isnumber()

D) isnumericstr()

6. What does the split() method in Python do?

A) Joins two strings together

B) Splits a string into a list of substrings

C) Replaces characters in a string

D) Removes leading and trailing characters

7. How do you access the last character of a string in Python?

A) s[-1]

B) s[0]

C) s[length-1]

D) s[last]

8. Which method in Python is used to remove leading and trailing whitespace

characters from a string?

A) trim()

B) rstrip()

C) lstrip()

D) strip()

9. What is the output of the join() method in Python?

A) Returns a concatenated string

B) Splits a string into a list of substrings

C) Removes leading and trailing characters

D) Returns the index of the first occurrence of a substring

10. Which method is used to pad a string with a specified character to a certain

length in Python?

A) pad()

B) fill()

C) center()

D) padding()

11. In Python, which method is used to check if a string starts with a specified

substring?

A) startswith()

B) start()

C) beginwith()

D) begin()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

79 Periyar University – CDOE| Self-Learning Material

12. What is the purpose of the format() method in Python?

A) Formats a string into a specified width

B) Converts a string to uppercase

C) Formats a string into nicer output

D) Removes leading and trailing characters

13. Which method in Python is used to replace occurrences of a substring inside

a string?

A) replace()

B) substitute()

C) swap()

D) sub()

14. How do you convert a string to uppercase in Python?

A) to_upper()

B) uppercase()

C) convert_upper()

D) upper()

15. What is the purpose of the strip() method in Python?

A) Converts a string to lowercase

B) Removes both leading and trailing characters

C) Splits a string into a list of substrings

D) Returns the index of the first occurrence of a substring

16. In Python, which method is used to check if a string ends with a specified

suffix?

A) endwith()

B) ends()

C) end()

D) endswith()

17. What does the count() method in Python do?

A) Returns occurrences of a substring in a string

B) Joins two strings together

C) Splits a string into a list of substrings

D) Removes leading and trailing characters

18. Which method in Python is used to convert a string to title case?

A) title()

B) to_title()

C) convert_title()

D) case_title()

19. How do you remove leading characters from a string in Python?

A) strip()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

80 Periyar University – CDOE| Self-Learning Material

B) lstrip()

C) rstrip()

D) trim()

20. What is the output of the find() method in Python?

A) Returns occurrences of a substring in a string

B) Replaces occurrences of a substring inside a string

C) Returns the index of the first occurrence of a substring

D) Checks if a string starts with a specified substring

SECTION 2.2: LISTS AND DICTIONARIES

2.2.1 LIST

In Python, a list is a versatile and mutable collection of items. It's one of the

built-in data structures and is commonly used to store a collection of related items.

Lists can contain elements of different data types, including integers, floats, strings,

and even other lists. They are defined by enclosing a comma-separated sequence of

items within square brackets [].

Here's a basic example of creating a list:

my_list = [1, 2, 3, 4, 5]

Lists are mutable, meaning can change, add, or remove elements after the list is

created. Here are some common operations you can perform on lists:

 Accessing Elements: Access individual elements in a list using indexing.

Indexing starts at 0 for the first element.

first_element = my_list[0] # Access the first element

 Slicing: You can extract a sub list (a slice) from a list using slicing notation.

sub list = my_list [1:4] # Extract elements from index 1 to index 3 (inclusive)

 Appending and Extending: Add elements to the end of a list using the append

() method or extend a list with the elements of another list using the extend()

method.

my_list.append(6) # Adds 6 to the end of the list.

my_list.extend([7, 8, 9]) # Extends the list with [7, 8, 9]

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

81 Periyar University – CDOE| Self-Learning Material

 Inserting Elements: Insert elements at a specific position in the list using the

insert () method.

my_list.insert(2, 'hello’) # Inserts 'hello' at index 2

 Removing Elements: Remove elements by value using the remove () method,

by index using the pop() method, or by clearing the entire list using the clear()

method.

my_list.remove(3) # Removes the first occurrence of 3 from the list

popped_element = my_list.pop(1) # Removes and returns the element at index

1

my_list.clear() # Removes all elements from the list

 Other Operations: Find the length of a list using the len() function, check if an

item is in a list using the in keyword, and more.

Lists are fundamental in Python and are used extensively in various programming

tasks due to their flexibility and ease of use.

Python Program Demonstrating List Operations:

Initialize a list

my_list = [10, 20, 30, 40, 50]

1. Accessing elements

print("Element at index 2:", my_list[2]) # Output: 30

2. Slicing

print("Sliced list (index 1 to 3):", my_list[1:4]) # Output: [20, 30, 40]

3. Append: Add an element to the end

my_list.append(60)

print("After appending 60:", my_list) # Output: [10, 20, 30, 40, 50, 60]

4. Insert: Insert at index 2

my_list.insert(2, 25)

print("After inserting 25 at index 2:", my_list) # Output: [10, 20, 25, 30, 40, 50,

60]

5. Extend: Add multiple elements

my_list.extend([70, 80])

print("After extending with [70, 80]:", my_list) # Output: [10, 20, 25, 30, 40, 50,

60, 70, 80]

6. Remove: Remove the first occurrence of 40

my_list.remove(40)

print("After removing 40:", my_list) # Output: [10, 20, 25, 30, 50, 60, 70, 80]

7. Pop: Remove the element at index 3

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

82 Periyar University – CDOE| Self-Learning Material

removed_element = my_list.pop(3)

print("Popped element at index 3:", removed_element) # Output: 30

print("List after popping:", my_list) # Output: [10, 20, 25, 50, 60, 70, 80]

*# 8. Index: Find the index of element 60

index_60 = my_list.index(60)

print("Index of element 60:", index_60) # Output: 4

9. Count: Count occurrences of 70

count_70 = my_list.count(70)

print("Count of 70 in the list:", count_70) # Output: 1

10. Sort: Sort the list

my_list.sort()

print("Sorted list:", my_list) # Output: [10, 20, 25, 50, 60, 70, 80]

11. Reverse: Reverse the list

my_list.reverse()

print("Reversed list:", my_list) # Output: [80, 70, 60, 50, 25, 20, 10]

12. Clear: Remove all elements from the list

my_list.clear()

print("List after clearing:", my_list) # Output: []

OUTPUT

Element at index 2: 30

Sliced list (index 1 to 3): [20, 30, 40]

After appending 60: [10, 20, 30, 40, 50, 60]

After inserting 25 at index 2: [10, 20, 25, 30, 40, 50, 60]

After extending with [70, 80]: [10, 20, 25, 30, 40, 50, 60, 70, 80]

After removing 40: [10, 20, 25, 30, 50, 60, 70, 80]

Popped element at index 3: 30

List after popping: [10, 20, 25, 50, 60, 70, 80]

Index of element 60: 4

Count of 70 in the list: 1

Sorted list: [10, 20, 25, 50, 60, 70, 80]

Reversed list: [80, 70, 60, 50, 25, 20, 10]

List after clearing: []

2.2.2 DICTIONARIES

Python dictionaries are unordered collections of key-value pairs. They are used

to store and retrieve data efficiently, providing fast lookup times for keys. Dictionaries

are mutable, meaning their elements can be modified after creation. Keys in

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

83 Periyar University – CDOE| Self-Learning Material

dictionaries must be unique, and they are typically immutable data types like strings

or numbers, while values can be of any data type.

Basic Operations:

Creating a Dictionary:

Empty dictionary

my_dict = {}

Dictionary with initial values

my_dict = {'name': 'John', 'age': 30, 'city': 'New York'}

Accessing Elements:

Accessing value using key

print(my_dict['name']) # Output: John

Using get() method (returns None if key doesn't exist)

print(my_dict.get('age')) # Output: 30

Adding or Modifying Elements:

Adding a new key-value pair

my_dict['gender'] = 'Male'

Modifying value for an existing key

my_dict['age'] = 35

Removing Elements:

Removing a key-value pair

del my_dict['city']

Removing all key-value pairs

my_dict.clear()

Iterating Over a Dictionary:

Iterating over keys

for key in my_dict:

 print(key)

Iterating over values

for value in my_dict.values():

 print(value)

Iterating over key-value pairs

for key, value in my_dict.items():

 print(key, value)

Checking Membership:

Checking if a key exists

if 'name' in my_dict:

 print("Key 'name' exists")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

84 Periyar University – CDOE| Self-Learning Material

DICTIONARY METHODS:

keys(): Returns a view of all keys in the dictionary.

values(): Returns a view of all values in the dictionary.

items(): Returns a view of all key-value pairs in the dictionary.

update(): Updates the dictionary with the key-value pairs from another dictionary or

iterable.

pop(): Removes and returns the value for a given key.

popitem(): Removes and returns the last inserted key-value pair.

Example :

Creating a dictionary

student = {'name': 'Alice', 'age': 20, 'major': 'Computer Science'}

Accessing elements

print(student['name']) # Output: Alice

Adding a new key-value pair

student['gpa'] = 3.8

Modifying value for an existing key

student['age'] = 21

Removing a key-value pair

del student['major']

Iterating over key-value pairs

for key, value in student.items():

 print(key, value)

Dictionaries are versatile data structures in Python, widely used for various

purposes such as storing configuration settings, caching data, and representing

structured data. Understanding how to effectively work with dictionaries is essential

for Python developers.

Initialize a dictionary

my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'}

1. Accessing elements

print("Name:", my_dict['name']) # Output: 'Alice'

2. Adding/Updating elements

my_dict['age'] = 26 # Update the value for 'age'

my_dict['email'] = 'alice@example.com' # Add a new key-value pair

print("Updated dictionary:", my_dict)

3. Removing elements

del my_dict['city'] # Remove 'city' from the dictionary

print("After removing 'city':", my_dict)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

85 Periyar University – CDOE| Self-Learning Material

4. Get all keys

keys = my_dict.keys()

print("Keys:", keys)

5. Get all values

values = my_dict.values()

print("Values:", values)

6. Get all key-value pairs

items = my_dict.items()

print("Key-value pairs:", items)

7. Check key existence

key_exists = 'email' in my_dict

print("Is 'email' key present?:", key_exists)

8. Length of the dictionary

length = len(my_dict)

print("Number of key-value pairs:", length)

9. Clear the dictionary

my_dict.clear()

print("Dictionary after clearing:", my_dict)

Reinitialize for further operations

my_dict = {'name': 'Alice', 'age': 25, 'city': 'New York'}

10. Pop a key and return its value

age = my_dict.pop('age')

print("Popped 'age':", age)

print("After popping 'age':", my_dict)

11. Pop the last inserted item

last_item = my_dict.popitem()

print("Popped last item:", last_item)

print("After popping last item:", my_dict)

12. Update with another dictionary

my_dict.update({'name': 'Bob', 'age': 30})

print("After updating with new data:", my_dict)

OUTPUT

Name: Alice

Updated dictionary: {'name': 'Alice', 'age': 26, 'email': 'alice@example.com'}

After removing 'city': {'name': 'Alice', 'age': 26, 'email': 'alice@example.com'}

Keys: dict_keys(['name', 'age', 'email'])

Values: dict_values(['Alice', 26, 'alice@example.com'])

Key-value pairs: dict_items([('name', 'Alice'), ('age', 26), ('email',

'alice@example.com')])

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

86 Periyar University – CDOE| Self-Learning Material

Is 'email' key present?: True

Number of key-value pairs: 3

Dictionary after clearing: {}

Popped 'age': 25

After popping 'age': {'name': 'Alice', 'city': 'New York'}

Popped last item: ('city', 'New York')

After popping last item: {'name': 'Alice'}

After updating with new data: {'name': 'Bob', 'age': 30}

Let Us Sum Up

In Python, lists are ordered collections of items, while dictionaries are

unordered collections of key-value pairs. Lists are mutable, allowing for dynamic

changes, while dictionaries are mutable as well, but their keys must be immutable.

Both lists and dictionaries offer versatile data storage and retrieval options. Lists

maintain elements in the order they were added, accessible via indices, while

dictionaries enable quick lookup of values using unique keys. Lists are denoted by

square brackets [], whereas dictionaries use curly braces { }. Understanding their

differences and applications enhances data manipulation and program efficiency.

Check Your Progress

1. What is the primary difference between a list and a dictionary in Python?

A) Lists are ordered collections, while dictionaries are unordered.

B) Lists can store only integers, while dictionaries can store any data type.

C) Lists can be accessed using keys, while dictionaries can be accessed

using indices.

D) Lists can only contain single elements, while dictionaries can contain

key-value pairs.

2. Which of the following operations is NOT supported by dictionaries in Python?

A) Adding new key-value pairs

B) Removing key-value pairs

C) Accessing elements by index

D) Updating existing key-value pairs

3. How do you access a specific element in a list by its index in Python?

A) Using the get() method

B) Using square brackets [] notation

C) Using the find() method

D) Using the access() method

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

87 Periyar University – CDOE| Self-Learning Material

4. What happens if you try to access a key in a dictionary that does not exist?

A) It returns None

B) It raises a KeyError exception

C) It returns an empty dictionary

D) It creates a new key with a None value

5. Which method in Python is used to add a new element to the end of a list?

A) append()

B) insert()

C) add()

D) extend()

6. How do you remove the last element from a list in Python?

A) Using the remove() method

B) Using the pop() method with no arguments

C) Using the pop() method with the index of the last element

D) Using the delete() method

7. What is the time complexity for accessing an element by index in a list in

Python?

A) O(1)

B) O(log n)

C) O(n)

D) O(n^2)

8. Which of the following is a valid way to create an empty dictionary in Python?

A) dict = {}

B) dict = {[]}

C) dict = ()

D) dict = []

9. How do you check if a key exists in a dictionary in Python?

A) Using the contains() method

B) Using the exists() method

C) Using the in keyword

D) Using the has_key() method

10. What does the keys() method return for a dictionary in Python?

A) All the values in the dictionary

B) All the keys in the dictionary

C) The length of the dictionary

D) The maximum key in the dictionary

11. How do you remove a key-value pair from a dictionary in Python?

A) Using the remove() metho

B) Using the pop() method with the key as an argument

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

88 Periyar University – CDOE| Self-Learning Material

C) Using the delete() method

D) Using the clear() method

12. Which method in Python is used to merge two dictionaries?

A) merge()

B) combine()

C) concat()

D) update()

13. What is the output of the len() function when called on a dictionary in Python?

A) The number of keys in the dictionary

B) The number of values in the dictionary

C) The total number of elements in the dictionary

D) The maximum key in the dictionary

14. What does the values() method return for a dictionary in Python?

A) All the keys in the dictionary

B) All the values in the dictionary

C) The length of the dictionary

D) The minimum value in the dictionary

15. How do you check if a value exists in a dictionary in Python?

A) Using the contains_value() method

B) Using the in keyword with the dictionary

C) Using the has_value() method

D) Using the exists() method

16. Which method in Python is used to get a list of all key-value pairs in a

dictionary?

A) items()

B) pairs()

C) keys()

D) values()

17. What is the time complexity for adding a new key-value pair to a dictionary in

Python?

A) O(1)

B) O(log n)

C) O(n)

D) O(n^2

18. How do you update the value of a specific key in a dictionary in Python?

A) Using the set() method

B) Using the change() method

C) Using square brackets [] notation

D) Using the update() method

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

89 Periyar University – CDOE| Self-Learning Material

19. Which of the following is a valid way to create a list with initial values in Python?

A) list = []

B) list = {}

C) list = [1, 2, 3]

D) list = ()

20. What is the time complexity for removing a key-value pair from a dictionary in

Python?

A) O(1)

B) O(log n)

C) O(n)

D) O(n^2)

SECTION 2.3: DESIGN WITH FUNCTIONS
2.3.1- DESIGN WITH FUNCTIONS

"Design with Functions" in Python refers to a programming paradigm or approach

where you design your code structure around functions. This approach emphasizes

breaking down a program into smaller, reusable functions, each responsible for

performing a specific task. Here's a breakdown of what it involves:

1. Modularity: The code is organized into modular units, with each unit

encapsulating a specific functionality. These units are often implemented as

functions, allowing you to isolate and debug specific parts of your code more

easily.

2. Reusability: Functions can be reused across different parts of your program or

even in different programs altogether. By designing functions with a clear

purpose and scope, you can avoid duplicating code and promote code reuse.

3. Readability: Breaking down the code into smaller functions can improve

readability and maintainability. Each function should ideally perform a single,

well-defined task, making it easier for other developers (including your future

self) to understand the code.

4. Testing and Debugging: With a modular design, it becomes easier to test and

debug your code. You can test each function independently, providing specific

inputs and checking the outputs, which helps in identifying and fixing bugs more

efficiently.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

90 Periyar University – CDOE| Self-Learning Material

5. Scalability: As your program grows in complexity, a function-based design can

help manage that complexity by organizing code into smaller, manageable

pieces. This makes it easier to extend and maintain the codebase over time.

Here's a simple example to illustrate how you might design a program with functions

in Python:

def calculate_area(radius):

 """Calculate the area of a circle."""

 return 3.14 * radius * radius.

 def calculate_volume(radius, height):

 """Calculate the volume of a cylinder."""

 base_area = calculate_area(radius)

 return base_area * height

def main ():

 """Main function to demonstrate the use of functions."""

 radius = float(input("Enter the radius of the cylinder: "))

 height = float(input("Enter the height of the cylinder: "))

 volume = calculate_volume(radius, height)

 print("The volume of the cylinder is:", volume)

if __name__ == "__main__":

 main ()

In this example, the code is organized around three functions: calculate_area,

calculate_volume, and main. Each function has a specific purpose, making the code

easier to understand, test, and maintain. The main function acts as the entry point to

the program, orchestrating the execution by calling other functions as needed. Overall,

designing with functions in Python promotes code organization, reusability, and

maintainability, leading to more robust and scalable software solutions.

2.3.2 PROBLEM SOLVING WITH TOP DOWN DESIGN

Top-Down Design in Python follows the same principles described earlier, but it

involves implementing the design using Python's syntax and features. Let's walk

through an example of implementing a simple program to calculate the total cost of a

shopping cart using a top-down design approach in Python:

1. High-Level Decomposition:

 Define the main function calculate_total_cost.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

91 Periyar University – CDOE| Self-Learning Material

 Identify sub-tasks: get_item_prices, calculate_subtotal,

apply_discounts, calculate_tax, calculate_total.

2. Submodule Decomposition:

 get_item_prices: Prompt the user to input prices for each item.

 calculate_subtotal: Add up the prices to get the subtotal.

 apply_discounts: Apply any discounts to the subtotal.

 calculate_tax: Calculate the tax based on the subtotal.

 calculate_total: Add tax to the discounted subtotal to get the total cost.

Example:

def get_item_prices():

 """Prompt the user to input prices for each item."""

 prices = []

 num_items = int(input("Enter the number of items: "))

 for i in range(num_items):

 price = float (input (f"Enter the price of item {i+1}: "))

 prices. append(price)

 return prices.

def calculate_subtotal(prices):

 """Calculate the subtotal."""

 return sum(prices)

def apply_discounts (subtotal, discount):

 """Apply any discounts to the subtotal."""

 return subtotal * (1 - discount)

def calculate_tax (subtotal, tax_rate):

 """Calculate the tax based on the subtotal."""

 return subtotal * tax_rate

def calculate_total_cost():

 """Calculate the total cost of the shopping cart."""

 prices = get_item_prices()

 subtotal = calculate_subtotal(prices)

 subtotal_after_discount = apply_discounts(subtotal, 0.1) # Assuming a 10%

discount

 tax = calculate_tax (subtotal_after_discount, 0.08) # Assuming an 8% tax rate

 total_cost = subtotal_after_discount + tax

 return total_cost

def main ():

 """Main function to execute the program."""

 total_cost = calculate_total_cost()

 print("Total cost of the shopping cart:", total_cost)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

92 Periyar University – CDOE| Self-Learning Material

if __name__ == "__main__":

 main ()

1. Integration:

 Functions are called within the calculate_total_cost function to perform

the calculations.

2. Testing and Debugging:

 Test each function independently and then test the integrated solution

with different inputs to ensure correctness.

This example demonstrates how top-down design can be implemented in

Python by breaking down a problem into smaller, manageable tasks and implementing

each task as a separate function. This approach leads to modular, readable, and

maintainable code.

2.3.3 DESIGN WITH RECURSIVE FUNCTIONS

In Python, we know that a function can call other functions. It is even possible

for the function to call itself. These types of construct are termed as recursive

functions.

The following image shows the working of a recursive function called recurse.

Example of a recursive function to find the factorial of an integer.

Factorial of a number is the product of all the integers from 1 to that number. For

example, the factorial of 6 (denoted as 6!) is 1*2*3*4*5*6 = 720.

Example:

def factorial(x):

 """This is a recursive function.

 to find the factorial of an integer"""

 if x == 1:

 return 1

 else:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

93 Periyar University – CDOE| Self-Learning Material

 return (x * factorial(x-1))

num = 3

print ("The factorial of", num, "is", factorial(num))

Out Put:

The factorial of 3 is 6

In the above example, factorial () is a recursive function as it calls itself.

When we call this function with a positive integer, it will recursively call itself by

decreasing the number. Each function multiplies the number with the factorial of the

number below it until it is equal to one. This recursive call can be explained in the

following steps.

factorial (3) # 1st call with 3

3 * factorial (2) # 2nd call with 2

3 * 2 * factorial (1) # 3rd call with 1

3 * 2 * 1 # return from 3rd call as number=1

3 * 2 # return from 2nd call

6 # return from 1st call

Let's look at an image that shows a step-by-step process of what is going on:

Our recursion ends when the number reduces to 1. This is called the base condition.

Every recursive function must have a base condition that stops the recursion or else

the function calls itself infinitely.

The Python interpreter limits the depths of recursion to help avoid infinite recursions,

resulting in stack overflows.

By default, the maximum depth of recursion is 1000. If the limit is crossed, it results

in Recursion Error. Let's look at one such condition.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

94 Periyar University – CDOE| Self-Learning Material

Example:

def recursor():

 recursor()

 recursor()

Output:

Traceback (most recent call last):

 File "<string>", line 3, in <module>

 File "<string>", line 2, in a

 File "<string>", line 2, in a

 File "<string>", line 2, in a

 [Previous line repeated 996 more times]

RecursionError: maximum recursion depth exceeded.

2.3.4 MANAGING A PROGRAM’S NAMESPACE

In Python, a namespace is a mapping from names to objects. It's like a

dictionary that associates variable names with objects (such as variables, functions,

classes, modules, etc.). Managing a program's namespace involves understanding

how names are bound to objects and how you can manipulate these bindings within

your program.

Here are some key aspects of managing a program's namespace in Python:

1. Local Namespace: Each function call in Python creates its own local

namespace, which contains the names defined within that function. These

names are local to the function and are not accessible outside of it.

2. Global Namespace: The global namespace contains the names defined at the

top level of a module or script. These names are accessible from any part of

the module or script.

3. Built-in Namespace: Python also has a built-in namespace that contains the

names of built-in functions, exceptions, and other objects provided by the

Python interpreter. These names are always available without the need for

importing.

4. Name Resolution: When you reference a name in Python, the interpreter looks

for that name first in the local namespace, then in the global namespace, and

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

95 Periyar University – CDOE| Self-Learning Material

finally in the built-in namespace. If the name is not found in any of these

namespaces, a NameError is raised.

5. Scope: Scope refers to the region of code where a name is valid and

accessible. Variables defined within a function have local scope and are only

accessible within that function. Variables defined at the top level of a module

have global scope and are accessible throughout the module.

6. global and nonlocal Keywords: In Python, you can use the global keyword

inside a function to indicate that a variable should be treated as global, even if

it's assigned a value within the function. Similarly, the nonlocal keyword allows

you to modify variables in the outer (enclosing) scope within a nested function.

Here's a simple example demonstrating the management of namespaces in Python:

Global namespace

global_variable = 10

def my_function ():

Local namespace

 local_variable = 20

 print ("Inside my_function:")

 print ("Local variable:", local_variable)

 print ("Global variable:", global_variable)

Accessing global variable

print ("Outside my_function (before calling):")

print ("Global variable:", global_variable)

Calling the function

my_function ()

Accessing global variable again

print ("Outside my_function (after calling):")

print ("Global variable:", global_variable)

In this example, global_variable is defined in the global namespace and is

accessible from both inside and outside the function my_function. However,

local_variable is defined only within the function's local namespace and is not

accessible outside the function.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

96 Periyar University – CDOE| Self-Learning Material

2.3.5 HIGHER ORDER FUNCTIONS

In Python, a higher-order function is a function that takes one or more functions

as arguments or returns a function as its result. Essentially, it treats functions as first-

class citizens, allowing them to be manipulated and passed around like any other

value.

Here are some key points about higher-order functions in Python:

1. Functions as Arguments: Higher-order functions can accept other functions

as arguments. This enables powerful abstractions and allows you to

parameterize behaviour by passing functions as arguments.

2. Functions as Return Values: Higher-order functions can also create and

return functions dynamically. This is particularly useful for creating functions

tailored to specific contexts or configurations.

3. Abstraction: Higher-order functions promote abstraction by separating

concerns and allowing you to express complex behaviour in terms of simpler

functions.

4. Common Higher-Order Functions: Python's standard library provides several

higher-order functions, such as map(), filter(), reduce(), and sorted(), which take

functions as arguments to apply operations on iterables.

5. Functional Programming: Higher-order functions are a fundamental concept

in functional programming, a programming paradigm that emphasizes the use

of functions as building blocks for creating software systems.

Here's a simple example to illustrate higher-order functions in Python:

Example:

def apply_operation(func, x, y):

 """Apply a binary operation function to two operands."""

 return func (x, y)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

97 Periyar University – CDOE| Self-Learning Material

def add (x, y):

 """Add two numbers."""

 return x + y

def subtract (x, y):

 """Subtract one number from another."""

 return x - y

Using apply_operation with different operations

result1 = apply_operation (add, 5, 3) # Equivalent to add (5, 3)

result2 = apply_operation (subtract, 10, 4) # Equivalent to subtract (10,

4)

print ("Result of addition:", result1) # Output: 8

print ("Result of subtraction:", result2) # Output: 6

In this example, apply_operation is a higher-order function because it takes

another function (add or subtract) as an argument. Depending on which function is

passed to apply_operation, it applies that operation to the given operands x and y.

Higher-order functions are powerful tools for writing expressive and modular

code in Python, enabling you to create flexible and reusable components. They are

widely used in functional programming paradigms and can lead to more concise and

elegant solutions to various programming problems.

Let Us Sum Up

In the realm of functional programming, understanding the core concepts is

pivotal. Designing with functions involves breaking down complex tasks into smaller,

manageable functions, aiding in modularity and reusability. Employing top-down

design enables tackling larger problems by breaking them into smaller, more solvable

sub-problems. Recursive functions offer elegant solutions by calling themselves within

their definition, often used in scenarios like tree traversal or factorial computation.

Managing a program's namespace involves handling variable scopes, ensuring clarity

and avoiding naming conflicts. Higher-order functions elevate functionality by treating

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

98 Periyar University – CDOE| Self-Learning Material

functions as first-class citizens, allowing operations like passing functions as

arguments or returning them from other functions. Mastering these concepts enriches

programming practices, fostering efficient and scalable code development.

CHECK YOUR PROGRESS

1. What is the primary advantage of designing with functions in programming?

A) Improved program speed

B) Enhanced program readability and organization

C) Decreased program memory usage

D) Simplified debugging process

2. What is top-down design primarily used for in programming?

A) Breaking down a problem into smaller, solvable sub-problems

B) Optimizing program performance

C) Reorganizing existing code

D) Generating random test cases

3. Which of the following best describes a recursive function?

A) A function that calls itself within its definition

B) A function with a complex algorithm

C) A function that takes no arguments

D) A function that returns a boolean value

4. What is namespace management in programming primarily concerned with?

A) Optimizing code execution speed

B) Avoiding memory leaks

C) Handling variable scopes and avoiding naming conflicts

D) Managing network resources

5. What are higher-order functions capable of doing in programming?

A) Treating functions as first-class citizens

B) Ignoring function calls

C) Running functions in parallel

D) Restricting function access

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

99 Periyar University – CDOE| Self-Learning Material

6. Which function design approach breaks down a problem into smaller, more

manageable sub-problems?

A) Bottom-up design

B) Top-down design

C) Recursive design

D) Procedural design

7. In top-down design, what is the first step typically involved in?

A) Defining the main program logic

B) Implementing the smallest sub-problems

C) Analyzing the problem statement

D) Writing documentation

8. What characteristic distinguishes a recursive function from a non-recursive

one?

A) It must contain a loop

B) It must call itself within its definition

C) It must have a fixed number of arguments

D) It must return a boolean value

9. What is the primary goal of managing a program's namespace?

A) Reducing code redundancy

B) Ensuring program portability

C) Minimizing memory usage

D) Preventing variable name conflicts

10. Which of the following functions is an example of a higher-order function?

A) add_numbers(a, b)

B) sort_list(list)

C) map(function, iterable)

D) calculate_average(list)

11. In top-down design, what is the process of dividing a large problem into

smaller sub-problems called?

A) Decomposition

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

100 Periyar University – CDOE| Self-Learning Material

B) Composition

C) Abstraction

D) Recursion

12. What is the primary purpose of a recursive function in programming?

A) To improve program performance

B) To simplify code structure

C) To handle repetitive tasks

D) To solve problems that can be broken down into smaller instances of

the same problem

13. Which of the following statements best describes namespace in programming?

A) It defines the scope within which names can be referenced

B) It represents a specific memory location

C) It is a reserved keyword in Python

D) It stores the value of a variable

14. How does a higher-order function differ from a regular function?

A) It can only accept one argument

B) It can only return one value

C) It can accept other functions as arguments or return them

D) It cannot be called from another function

15. What does the acronym DRY stand for in programming?

A) Don't Repeat Yourself

B) Do Repeat Yourself

C) Duplicate Repeated Yield

D) Do Reuse Yourself

16. Which of the following is NOT a benefit of using functions in programming?

A) Improved code readability

B) Enhanced code modularity

C) Increased program speed

D) Simplified debugging process

17. In recursive functions, what is the base case?

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

101 Periyar University – CDOE| Self-Learning Material

A) The case where the function returns a value

B) The case where the function calls itself

C) The case where the function terminates without calling itself

D) The case where the function has no arguments

18. What is the primary purpose of a higher-order function?

A) To improve program efficiency

B) To reduce code redundancy

C) To treat functions as first-class citizens

D) To handle memory management

19. Which function design approach emphasizes solving the problem at the highest

level first?

A) Bottom-up design

B) Recursive design

C) Procedural design

D) Top-down design

20. What does recursion involve in programming?

A) Repeating a sequence of instructions

B) Calling a function from within itself

C) Iterating through a list of elements

D) Breaking down a problem into smaller sub-problems

Unit Summary

In this unit, we delved into the fundamental concepts of Python programming,

covering a diverse array of topics essential for building a solid understanding of the

language. We began by exploring the intricacies of strings and text manipulation,

learning how to effectively work with textual data through methods like concatenation,

slicing, and formatting. Understanding these operations provided a crucial foundation

for more complex data handling tasks. Moving forward, we delved into the versatile

world of lists and dictionaries, two fundamental data structures in Python. With lists,

we learned how to manage ordered collections of items, perform various operations

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

102 Periyar University – CDOE| Self-Learning Material

such as appending, inserting, and accessing elements by index. Dictionaries

introduced us to the concept of key-value pairs, enabling efficient mapping and

retrieval of data, essential for a wide range of applications. Functions emerged as a

pivotal aspect of our journey, offering a modular approach to programming. Through

functions, we encapsulated reusable blocks of code, enhancing code readability,

modularity, and maintainability. We explored different aspects of function design,

including parameter passing, return values, and the importance of proper function

documentation. Moreover, we delved into problem-solving techniques, emphasizing

strategies like top-down design and recursive thinking. These problem-solving

methodologies equipped us with the tools to tackle complex programming challenges

systematically, enabling efficient algorithmic thinking and program design.

Glossary

 Strings: Sequences of characters used to represent textual data in Python

programs. Strings support various operations such as concatenation, slicing,

and formatting.

 Text Manipulation: The process of modifying or extracting information from

strings. Text manipulation techniques include converting case, splitting,

stripping whitespace, and searching for substrings.

 Lists: Ordered collections of items in Python, allowing for the storage and

manipulation of multiple elements. Lists support operations like appending,

inserting, accessing elements by index, and slicing.

 Dictionaries: Data structures that store key-value pairs, enabling efficient

mapping and retrieval of data. Dictionaries provide a flexible way to organize

and access information based on unique keys.

 Functions: Reusable blocks of code that perform specific tasks. Functions

enhance code modularity, readability, and reusability by encapsulating logic into

named units.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

103 Periyar University – CDOE| Self-Learning Material

 Parameters: Variables defined within the parentheses of a function definition,

used to pass data into the function. Parameters enable functions to operate on

different inputs dynamically.

 Return Values: Data or objects returned by a function after it completes its

execution. Return values allow functions to communicate results or outputs

back to the caller.

 Modular Programming: A programming paradigm that emphasizes breaking

down complex systems into smaller, manageable modules or functions.

Modular programming enhances code organization, maintainability, and

scalability.

 Top-Down Design: A problem-solving approach where a complex problem is

broken down into smaller, more manageable subproblems, which are further

decomposed until they can be easily solved using code.

 Recursive Functions: Functions that call themselves within their definition,

allowing for the solution of problems that can be broken down into smaller

instances of the same problem.

 Namespace: A container that holds a set of identifiers, such as variable names

and function names, and their corresponding objects. Namespaces prevent

naming conflicts and facilitate code organization and management.

 Higher-Order Functions: Functions that take other functions as arguments or

return functions as results. Higher-order functions enable powerful

programming techniques like functional programming and callback

mechanisms.

Self – Assessment Questions

1. Compare and contrast strings and lists in Python. How do their characteristics

and operations differ?

2. Explain the importance of dictionaries in Python programming. Analyze

scenarios where dictionaries are preferred over lists for data storage and

retrieval.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

104 Periyar University – CDOE| Self-Learning Material

3. Evaluate the role of functions in modular programming. How do functions

enhance code organization and reusability?

4. Analyze the benefits of top-down design in problem-solving. How does breaking

down complex problems into smaller subproblems facilitate program

development?

5. Explain the concept of recursion in programming. Analyze scenarios where

recursive functions are advantageous over iterative approaches.

6. Compare and contrast the del keyword and the pop() method for removing

elements in Python dictionaries. When would you choose one over the other?

7. Evaluate the efficiency of different string manipulation methods in Python, such

as split(), join(), and strip(). How do these methods impact code performance

and readability?

8. Analyze the use of higher-order functions in Python. Provide examples of

scenarios where higher-order functions offer advantages over traditional

approaches.

9. Explain how namespaces are managed in Python programs. Analyze the

implications of namespace conflicts and strategies to avoid them.

10. Compare the efficiency of list comprehension and traditional loops for creating

lists in Python. Evaluate factors such as readability, performance, and memory

usage.

Activities / Exercises / Case Studies

Activities

1. String Manipulation Challenge: Provide a set of string manipulation tasks where

students need to perform operations like concatenation, splitting, stripping

whitespace, and formatting to achieve specific outputs.

2. List Operations Lab: Create a lab activity where students practice various list

operations such as appending, inserting, removing, and slicing elements.

Provide real-world scenarios where these operations are applicable.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

105 Periyar University – CDOE| Self-Learning Material

3. Dictionary Adventure: Design a scavenger hunt activity where students use

dictionaries to navigate through a virtual world, retrieving information and

solving puzzles along the way.

4. Function Design Workshop: Organize a workshop where students collaborate

to design and implement functions for solving specific tasks. Encourage them

to document their functions and discuss best practices for function design.

5. Problem-Solving Hackathon: Host a problem-solving hackathon where

students work in teams to tackle coding challenges using top-down design and

recursive thinking. Provide prizes for the most elegant and efficient solutions.

Exercises

1. String Practice Problems: Assign a set of practice problems involving string

manipulation, including tasks like reversing strings, counting occurrences of

substrings, and validating input formats.

2. List Challenges: Provide exercises where students must manipulate lists to

perform tasks such as sorting elements, finding duplicates, and implementing

algorithms like binary search or merge sort.

3. Dictionary Drills: Present exercises where students practice using dictionaries

to solve real-world problems, such as building a contact management system

or implementing a word frequency analyzer.

4. Function Implementation Tasks: Assign tasks that require students to

implement specific functions to accomplish defined objectives. For example,

create functions to calculate factorial, find prime numbers, or validate email

addresses.

5. Algorithmic Exercises: Challenge students with algorithmic exercises that

require recursive thinking, such as implementing Fibonacci sequence

generation, tower of Hanoi problem, or depth-first search algorithm.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

106 Periyar University – CDOE| Self-Learning Material

Case Studies

1. Inventory Management System: Present a case study where students design

and implement an inventory management system using lists and dictionaries.

They must create functions for adding, updating, and querying inventory items.

2. Text Processing Application: Provide a case study where students develop a

text processing application capable of performing various string operations like

word count, character frequency analysis, and text encryption/decryption.

3. Student Gradebook System: Describe a case study scenario where students

build a student gradebook system using dictionaries to store student

information and grades. They must implement functions for calculating

averages, generating reports, and handling data updates.

4. Recursive Problem Solver: Challenge students with a case study involving the

development of a recursive problem-solving tool. They must implement

functions to solve classic recursive problems like factorial calculation, Fibonacci

sequence generation, and binary search.

Answers for check your progress

Module

s

S. No. Answers

Module

1

 1. A) s[0]

2. A) encrypt()

3. B) lower()

4. D) Returns the ASCII value for a character

5. B) isdigit()

6. B) Splits a string into a list of substrings

7. A) s[-1]

8. D) strip()

9. A) Returns a concatenated string

10. C) center()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

107 Periyar University – CDOE| Self-Learning Material

11. A) startswith()

12. C) Formats a string into nicer output

13. A) replace()

14. D) upper()

15. B) Removes both leading and trailing characters

16. D) endswith()

17. A) Returns occurrences of a substring in a string

18. A) title()

19. B) lstrip()

20. C) Returns the index of the first occurrence of a

substring

Module

2

1.
A) s[0]

2. C) decrypt()

3. B) lower()

4. C) Returns the Unicode code point for a character

5. B) isdigit()

6. B) Splits a string into a list of substrings

7. A) s[-1]

8. D) strip()

9. A) Returns a concatenated string

10. C) center()

11. A) startswith()

12. C) Formats a string into nicer output

13. A) replace()

14. D) upper()

15. B) Removes both leading and trailing characters

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

108 Periyar University – CDOE| Self-Learning Material

16. D) endswith()

17. A) Returns occurrences of a substring in a string

18. A) title()

19. B) lstrip()

20. C) Returns the index of the first occurrence of a

substring

Module

3.

1.
B) Enhanced program readability and organization

2. A) Breaking down a problem into smaller, solvable

sub-problems

 3. A) A function that calls itself within its definition

4. C) Handling variable scopes and avoiding naming

conflicts

 5. A) Treating functions as first-class citizens

 6. B) Top-down design

 7. C) Analyzing the problem statement

 8. B) It must call itself within its definition

 9. D) Preventing variable name conflicts

 10. C) map(function, iterable)

 11. A) Decomposition

12. D) To solve problems that can be broken down into

smaller instances of the same problem

13. A) It defines the scope within which names can be

referenced

14. C) It can accept other functions as arguments or

return them

 15. A) Don't Repeat Yourself

 16. C) Increased program speed

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

109 Periyar University – CDOE| Self-Learning Material

17. C) The case where the function terminates without

calling itself

 18. C) To treat functions as first-class citizens

 19. D) Top-down design

 20. B) Calling a function from within itself

Suggested Readings

1. Ramalho, L. (2022). Fluent python. " O'Reilly Media, Inc.".

2. Sweigart, A. (2019). Automate the boring stuff with Python: practical

programming for total beginners. no starch press.

3. Downey, A. B. (2003). How to think like a computer scientist.

Open-Source E-Content Links

1. https://docs.python.org/3/

2. https://www.w3schools.com/python/

3. https://www.geeksforgeeks.org/python-programming-language-

tutorial/

References

1. "Python for Everybody" by Dr. Charles Severance

2. Coursera: Python for Everybody Specialization

3. Codecademy Python Course

4. Coursera: Python for Everybody Specialization

https://docs.python.org/3/
https://www.w3schools.com/python/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

76 Periyar University – CDOE| Self-Learning Material

Design with Classes

UNIT III – DESIGN WITH CLASSES

Unit III: Design with Classes: Getting inside Objects and Classes - Data-

Modeling Examples - Building a New Data Structure - The Two - Dimensional

Grid - Structuring Classes with Inheritance and Polymorphism-Graphical User

Interfaces-The Behavior of terminal-Based programs and GUI-Based programs

- Coding Simple GUI-Based programs - Windows and Window Components -

Command Buttons and responding to events.

Section Topic Page No.

UNIT – III

Unit Objectives

Section 3.1 Design with Classes 77

3.1.1 Getting Inside objects and Classes 77

3.1.2 Data Modeling Examples 79

3.1.3 Building a New Data Structure 81

3.1.4 The Two Dimensional Grid 82

3.1.5 Structuring Classes with Inheritance and Polymorphism 86

 Let Us Sum Up 89

 Check Your Progress 89

Section 3.2 Graphical User Interfaces 93

3.2.1
The Behavior of Terminal Based Programs and GUI Based

Programs
95

3.2.2 Coding Simple GUI Based Programs 101

3.2.3 Windows and Window Components 104

3.2.4 Command Buttons and responding to events 119

 Let Us Sum Up 120

 Check Your Progress 120

3.3 Unit- Summary 125

3.4 Glossary 126

3.5 Self- Assessment Questions 127

3.6 Activities / Exercises / Case Studies 127

3.7 Answers for Check your Progress 129

3.8 References and Suggested Readings 131

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

77 Periyar University – CDOE| Self-Learning Material

Unit Objective

In the unit "Design with Classes," students will delve into the fundamental

concepts of Object-Oriented Programming (OOP) by exploring classes, objects,

inheritance, and polymorphism. They will learn how to model real-world entities using

classes and design efficient data structures. Through hands-on examples and

projects, students will gain proficiency in structuring classes, building data structures

like grids, and implementing inheritance and polymorphism to create reusable and

extensible code. Furthermore, they will explore the development of graphical user

interfaces (GUIs) and learn to design and code simple GUI-based programs, including

the creation of windows, window components, command buttons, and event handling.

By the end of the unit, students will have a comprehensive understanding of OOP

principles and practical skills in developing both terminal-based and GUI-based

applications.

SECTION 3. 1: DESIGN WITH CLASSES

3.1.1 DESIGN WITH CLASSES : GETTING INSIDE OBJECTS AND CLASSES

Designing with classes involves creating modular and reusable code using

object-oriented programming (OOP) principles. To get inside objects and classes, let's

explore how to design classes effectively, how to define attributes and methods, and

how to use inheritance and encapsulation to build flexible and maintainable code.

Here's a breakdown of designing with classes:

1. Identify Objects: Identify the real-world entities or concepts you want to model

in your program. Each of these entities can be represented as an object.

2. Define Classes: For each identified object, create a class that defines its

attributes (data) and methods (behaviour). Classes serve as blueprints for

creating objects.

3. Attributes: Attributes represent the state of an object. They are defined as

variables within a class and hold data specific to each object.

4. Methods: Methods are functions defined within a class that define the behavior

of the objects. They operate on the attributes of the object and can perform

various actions.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

78 Periyar University – CDOE| Self-Learning Material

5. Encapsulation: Encapsulation is the bundling of data (attributes) and methods

that operate on that data within a single unit (a class). It hides the internal state

of the object and exposes only certain operations through methods.

6. Inheritance: Inheritance is a mechanism where a new class (subclass) can

inherit attributes and methods from an existing class (superclass). This

promotes code reuse and enables hierarchical relationships between classes.

7. Polymorphism: Polymorphism allows objects of different classes to be treated

as objects of a common superclass. It enables the same method name to

behave differently based on the object it is called on.

Let's illustrate these concepts with an example:

class Animal:

def __init__(self, name):

self.name = name

def speak(self):

pass

Abstract method, to be overridden in subclasses

class Dog (Animal):

 def speak(self):

 return f"{self.name} says woof!"

class Cat (Animal):

 def speak(self):

 return f"{self.name} says meow!"

Create instances of Dog and Cat

dog = Dog("Buddy")

cat = Cat("Whiskers")

Call the speak method for each object

print(dog.speak()) # Output: Buddy says woof!

print(cat.speak()) # Output: Whiskers says meow!

In this example, we have a superclass Animal with a common attribute name and an

abstract method speak (). The subclasses Dog and Cat inherit from Animal and

provide their own implementation of the speak () method. This demonstrates

inheritance and polymorphism in action.

By designing with classes in Python, you can create modular, reusable, and

maintainable code that accurately models real-world entities and promotes code

organization and abstraction.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

79 Periyar University – CDOE| Self-Learning Material

3.1.2 DATA MODELING EXAMPLES

Data modeling is the process of creating a conceptual representation of data

and its relationships to better understand how to organize and manipulate that data.

In Python, data modeling often involves defining classes and their relationships to

model real-world entities and their interactions.

Here are a few examples of data modeling in Python:

1. Employee Management System:

 Classes: Employee, Department, Manager

 Attributes: name, employee_id, salary, department, etc.

 Methods: calculate_bonus (), update_salary (), etc.

 Relationships: Employee belongs to a Department, Department is

managed by a manager, etc.

2. Library Management System:

 Classes: Book, Library, Member

 Attributes: title, author, ISBN, due_date, borrower, etc.

 Methods: check_out (), return_book(), calculate_fine(), etc.

 Relationships: Book is owned by Library, Member borrows Book, etc.

3. Banking System:

 Classes: Account, Customer, Transaction

 Attributes: account_number, balance, customer, transaction_type, etc.

 Methods: deposit (), withdraw (), transfer(), etc.

 Relationships: Account belongs to Customer, Transaction is associated

with Account, etc.

4. E-commerce Platform:

 Classes: Product, User, Order

 Attributes: name, price, quantity, user_id, order_date, etc.

 Methods: add_to_cart (), checkout (), cancel_order(), etc.

 Relationships: Product is in Order, Order is associated with User, etc.

Let's take a closer look at an example of modeling a simple library system:

class Book:

 def __init__(self, title, author, isbn):

 self.title = title

 self.author = author

 self.isbn = isbn

 self.checked_out = False

 def check_out(self):

 self.checked_out = True

 def return_book(self):

 self.checked_out = False

class Library:

 def __init__(self, name):

 self.name = name

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

80 Periyar University – CDOE| Self-Learning Material

 self.books = []

 def add_book (self, book):

 self.books.append(book)

 def find_available_books(self):

 return [book for book in self. books if not

book.checked_out]

class Member:

 def __init__(self, name, member_id):

 self.name = name

 self.member_id = member_id

 self.checked_out_books = []

 def check_out_book (self, book):

 if not book.checked_out:

 book.check_out()

 self.checked_out_books.append(book)

 return True

 else:

 return False

 def return_book(self, book):

 if book in self.checked_out_books:

 book.return_book()

 self.checked_out_books. remove(book)

 return True

 else:

 return False

Usage

book1 = Book ("Python Crash Course", "Eric Matthes",

"978-1593279288")

book2 = Book ("Clean Code", "Robert C. Martin", "978-

0132350884")

library = Library ("Central Library")

library.add_book(book1)

library.add_book(book2)

member = Member ("John Doe", "123456")

available_books = library.find_available_books()

print ("Available Books:", [book. title for book in

available_books])

member.check_out_book(book1)

available_books = library. find_available_books ()

print ("Available Books after checkout:", [book.title for

book in available_books])

member.return_book(book1)

available_books = library. find_available_books ()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

81 Periyar University – CDOE| Self-Learning Material

print ("Available Books after return:", [book.title for book

in available_books])

3.1.3 BUILDINGA A NEW DATA STRUCTURE

EXAMPLE OF BUILDING A NEW DATA STRUCTURE FOR MODELING A

BOOKSTORE INVENTORY:

Bookstore Inventory Data Structure:

class Book:

 def __init__(self, title, author, isbn, price, quantity):

 self.title = title

 self.author = author

 self.isbn = isbn

 self.price = price

 self.quantity = quantity

 def display_info(self):

 print(f"Title: {self.title}")

 print(f"Author: {self.author}")

 print(f"ISBN: {self.isbn}")

 print(f"Price: ${self.price}")

 print(f"Quantity: {self.quantity}")

class BookstoreInventory:

 def __init__(self):

 self.books = {}

 def add_book(self, book):

 if book.isbn not in self.books:

 self.books[book.isbn] = book

 print(f"Added '{book.title}' to inventory.")

 else:

 print(f"Book with ISBN '{book.isbn}' already exists

in inventory.")

 def remove_book(self, isbn):

 if isbn in self.books:

 del self.books[isbn]

 print(f"Book with ISBN '{isbn}' removed from

inventory.")

 else:

 print(f"No book found with ISBN '{isbn}' in

inventory.")

 def update_quantity(self, isbn, quantity):

 if isbn in self.books:

 self.books[isbn].quantity = quantity

 print(f"Quantity updated for book with ISBN '{isbn}'.")

 else:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

82 Periyar University – CDOE| Self-Learning Material

 print(f"No book found with ISBN '{isbn}' in inventory.")

 def display_inventory(self):

 print("Bookstore Inventory:")

 for book in self.books.values():

 book.display_info()

 print("-------------------------")

Example usage:

book1 = Book("The Great Gatsby", "F. Scott Fitzgerald",

"9780743273565", 12.99, 50)

book2 = Book("To Kill a Mockingbird", "Harper Lee", "9780061120084",

10.99, 30)

inventory = BookstoreInventory()

inventory.add_book(book1)

inventory.add_book(book2)

inventory.display_inventory()

inventory.update_quantity("9780743273565", 40)

inventory.remove_book("9780061120084")

inventory.display_inventory()

In this example, we've created two classes: Book and Bookstore Inventory. The

Book class represents individual books with attributes like title, author, ISBN, price,

and quantity. The Bookstore Inventory class manages a collection of books using a

dictionary where the ISBN serves as the key.

The Bookstore Inventory class provides methods to add, remove, update

quantity, and display the inventory of books. Each method performs operations on the

dictionary of books based on the provided ISBN. This data structure allows for efficient

management of a bookstore inventory, enabling operations such as adding new books,

updating quantities, and displaying the current inventory status.

3.1.3 THE TWO-DIMENSIONAL GRID

A two-dimensional grid is a common data structure used in various applications,

such as games, simulations, image processing, and more. It is essentially a matrix or

a table of elements arranged in rows and columns.

Here's a step-by-step guide on how to create and manipulate a two-dimensional grid

in Python:

Step 1: Creating a 2D Grid.

You can create a 2D grid using a list of lists. Each inner list represents a row in

the grid.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

83 Periyar University – CDOE| Self-Learning Material

Example:

Create a 3x3 grid initialized with zeros

grid = [[0, 0, 0],

 [0, 0, 0],

 [0, 0, 0]]

Alternatively, use a loop to create a grid of given dimensions

def create_grid(rows, cols, initial_value=0):

 return [[initial_value for _ in range(cols)] for _ in range(rows)]

Create a 3x3 grid initialized with zeros

grid = create_grid(3, 3)

print(grid)

Step 2: Accessing and Modifying Elements

You can access and modify elements in the grid using row and column indices.

Example:

Accessing an element at row 1, column 2

print(grid[1][2]) # Output: 0

Modifying an element at row 1, column 2

grid [1][2] = 5

print (grid [1][2]) # Output: 5

Step 3: Displaying the Grid

You can display the grid in a readable format using nested loops.

Example:

def display_grid(grid):

 for row in grid:

 print (" ".join(map (str, row)))

display_grid(grid)

Output:

0 0 0

0 0 5

0 0 0

Step 4: Example Operations

Here are a few example operations on a 2D grid:

Filling the Grid with Values

Fill the grid with consecutive numbers

value = 1

for row in range(len(grid)):

 for col in range(len(grid[row])):

 grid[row][col] = value

 value += 1

display_grid(grid)

Output:

1 2 3

4 5 6

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

84 Periyar University – CDOE| Self-Learning Material

7 8 9

Summing Elements in the Grid

def sum_grid(grid)

 total = 0

for row in grid:

 total += sum(row)

 return total

 print(sum_grid(grid)) # Output: 45

Finding the Maximum Element

def max_in_grid(grid):

 max_value = float('-inf')

 for row in grid:

 for value in row:

 if value > max_value:

 max_value = value

 return max_value

print(max_in_grid(grid)) # Output: 9

Step 5: More Complex Operations

You can also perform more complex operations such as searching for a specific

value, counting occurrences of a value, or implementing algorithms like pathfinding on

the grid.

Counting Occurrences of a Value

def count_value (grid, target):

 count = 0

for row in grid:

count += row.count(target)

 return count

Example grid

grid = [[1, 2, 3],[4, 5, 6], [7, 8, 9]]

print (count_value (grid, 5)) # Output: 1

A two-dimensional grid is a versatile data structure that can be used to model

various problems and scenarios. By understanding how to create, manipulate, and

perform operations on a 2D grid, you can solve many computational problems

efficiently.

Here's the complete code:

Create a grid

def create_grid(rows, cols, initial_value=0):

 return [[initial_value for _ in range(cols)] for _ in range(rows)]

Display the grid

def display_grid(grid):

 for row in grid:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

85 Periyar University – CDOE| Self-Learning Material

 print (" “. join (map (str, row)))

Fill the grid with consecutive numbers

def fill_grid(grid):

 value = 1

 for row in range(len(grid)):

 for col in range(len(grid[row])):

 grid[row][col] = value

 value += 1

Sum elements in the grid

def sum_grid(grid):

 total = 0

 for row in grid:

 total += sum(row)

 return total

Find the maximum element in the grid

def max_in_grid(grid):

 max_value = float('-inf')

 for row in grid:

 for value in row:

 if value > max_value:

 max_value = value

 return max_value

Count occurrences of a value in the grid

def count_value (grid, target):

 count = 0

 for row in grid:

 count += row. count(target)

 return count.

Main function to demonstrate the grid operations

def main ():

 grid = create_grid (3, 3)

 print ("Initial Grid:")

 display_grid(grid)

 grid [1][2] = 5

 print ("\nModified Grid:")

 display_grid(grid)

 fill_grid(grid)

 print ("\nFilled Grid:")

 display_grid(grid)

 print ("\nSum of elements in the grid:", sum_grid(grid))

 print ("Maximum element in the grid:", max_in_grid(grid))

 print ("Count of value 5 in the grid:", count_value (grid, 5))

 if __name__ == "__main__":

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

86 Periyar University – CDOE| Self-Learning Material

 main ()

This code demonstrates how to create, manipulate, and perform various operations

on a two-dimensional grid in Python.

3.1.4 STRUCTURING CLASSES WITH INHERITANCE AND POLYMORPHISM

Structuring classes with inheritance and polymorphism is a fundamental

concept in object-oriented programming (OOP). These principles help create flexible

and reusable code by allowing classes to share functionality and enabling methods to

behave differently based on the object that invokes them.

Inheritance

Inheritance allows a class (the child class) to inherit attributes and methods

from another class (the parent class). This promotes code reuse and establishes a

hierarchical relationship between classes.

Polymorphism

Polymorphism allows objects of different classes to be treated as objects of a

common superclass. It enables the same method to perform different operations

based on the object it is called on.

Let's walk through an example to illustrate these concepts:

Example Scenario: Animal Hierarchy

We'll create a class hierarchy for different types of animals. All animals have some

common behaviors (methods), but each type of animal also has specific behaviors.

1. Define the Base Class (Parent Class)

class Animal:

 def __init__(self, name):

 self.name = name

 def speak(self):

 raise Not Implemented Error ("Subclass must implement abstract

method")

 def move(self):

 print(f"{self.name} moves")

The Animal class defines common attributes and methods for all animals. The speak

method is intended to be overridden by subclasses, making it an abstract method.

2.Define Derived Classes (Child Classes)

class Dog (Animal):

 def speak(self):

 return f"{self.name} says woof!"

 def fetch(self):

 return f"{self.name} is fetching the ball!"

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

87 Periyar University – CDOE| Self-Learning Material

class Cat(Animal):

 def speak(self):

 return f"{self.name} says meow!"

 def climb(self):

 return f"{self.name} is climbing the tree!"

class Bird (Animal):

 def speak(self):

 return f"{self.name} says tweet!"

 def fly(self):

 return f"{self.name} is flying!"

The Dog, Cat, and Bird classes inherit from the Animal class. Each subclass provides

its own implementation of the speak method and may include additional methods

specific to the subclass.

3.Using Polymorphism

You can treat objects of different subclasses as objects of the parent class and

call overridden methods, which will behave according to the object's actual class.

Example:

def animal_sound(animal):

 print (animal. speak ())

Create instances of each subclass

dog = Dog("Buddy")

cat = Cat("Whiskers")

bird = Bird("Tweety")

Use polymorphism to call the speak method

animal_sound(dog) # Output: Buddy says woof!

animal_sound(cat) # Output: Whiskers says meow!

animal_sound(bird) # Output: Tweety says tweet!

In this example, the animal_sound function accepts an Animal object but behaves

differently based on the actual subclass of the object passed to it.

4.Combining Inheritance and Polymorphism

You can create a list of animals and iterate over it, calling methods defined in the

parent class. Polymorphism ensures that the correct method implementation is called

for each object.

Example:

animals = [dog, cat, bird]

for animal in animals:

 print (animal. speak ())

 animal.move ()

Output:

Buddy says woof!

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

88 Periyar University – CDOE| Self-Learning Material

Buddy moves

Whiskers says meow!

Whiskers moves

Tweety says tweet!

Tweety moves

Complete Example

Here is the complete code for the example:

class Animal:

 def __init__(self, name):

 self.name = name

 def speak(self):

 raise Not Implemented Error ("Subclass must implement abstract

method")

 def move(self):

 print(f"{self.name} moves")

class Dog (Animal):

 def speak(self):

 return f"{self.name} says woof!"

 def fetch(self):

 return f"{self.name} is fetching the ball!"

class Cat(Animal):

 def speak(self):

 return f"{self.name} says meow!"

 def climb(self):

 return f"{self.name} is climbing the tree!"

class Bird(Animal):

 def speak(self):

 return f"{self.name} says tweet!"

 def fly(self):

 return f"{self.name} is flying!"

def animal_sound(animal):

 print(animal.speak())

Create instances of each subclass

dog = Dog("Buddy")

cat = Cat("Whiskers")

bird = Bird("Tweety")

Use polymorphism to call the speak method

animal_sound(dog) # Output: Buddy says woof!

animal_sound(cat) # Output: Whiskers says meow!

animal_sound(bird) # Output: Tweety says tweet!

List of animals

animals = [dog, cat, bird]

for animal in animals:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

89 Periyar University – CDOE| Self-Learning Material

 print(animal.speak())

 animal.move()

Output:

Buddy says woof!

Buddy moves

Whiskers says meow!

Whiskers moves

Tweety says tweet!

Tweety moves

 Inheritance: Allows classes to inherit attributes and methods from a parent

class, promoting code reuse.

 Polymorphism: Allows objects of different classes to be treated as objects of

a common superclass, enabling methods to behave differently based on the

object.

By structuring classes with inheritance and polymorphism, you can create flexible and

maintainable code that models real-world relationships and behaviors effectively.

Let Us Sum Up

This unit delves into the core principles of Object-Oriented Programming

(OOP), focusing on designing and implementing classes and objects. Students

explore data-modeling examples to understand how real-world entities can be

represented using classes. They also learn to build new data structures, such as a

two-dimensional grid, enhancing their ability to manage complex data. The unit

emphasizes structuring classes using inheritance and polymorphism, allowing for

code reuse and the creation of flexible, extensible software designs. Through practical

examples, students gain hands-on experience in creating sophisticated programs that

leverage the power of OOP.

Check Your Progress

1. What is the primary purpose of using classes in programming?

A) To increase program speed

B) To organize code and encapsulate data and behavior

C) To decrease memory usage

D) To simplify syntax

2. What does the term "object" refer to in object-oriented programming?

A) A variable that holds multiple values

B) An instance of a class

C) A function within a class

D) A type of data structure

3. What is inheritance in object-oriented programming?

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

90 Periyar University – CDOE| Self-Learning Material

A) The process of creating new classes from existing ones

B) The ability of a function to call itself

C) The encapsulation of data and methods

D) The act of defining a function within a class

4. Which keyword is used to create a class in Python?

A) class

B) def

C) function

D) new

5. What is polymorphism in the context of OOP?

A) The ability to define multiple methods with the same name

B) The ability to use a single function name for multiple types

C) The ability to change an object's type at runtime

D) The ability to create classes from other classes

6. What is the purpose of the __init__ method in Python classes?

A) To initialize a class attribute

B) To define a class method

C) To initialize a new object instance

D) To delete an object instance

7. In a class definition, what does self represent?

A) The class itself

B) A global variable

C) The current instance of the class

D) A local variable

8. How do you call a method myMethod of an object obj in Python?

A) myMethod(obj)

B) obj.myMethod()

C) obj->myMethod()

D) obj

9. What is encapsulation in OOP?

A) The ability to inherit methods from a parent class

B) The bundling of data and methods into a single unit

C) The ability to define multiple methods with the same name

D) The creation of new objects

10. What is a class attribute?

A) A function defined inside a class

B) A variable that is shared among all instances of a class

C) A variable that is specific to an instance of a class

D) A method that initializes class instances

11. Which method is used to represent an object as a string in Python?

A) str

B) repr

C) init

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

91 Periyar University – CDOE| Self-Learning Material

D) format

12. How can you prevent a method from being overridden in a subclass?

A) By defining it as private

B) By using the final keyword

C) By using the static keyword

D) By defining it as protected

13. What does super() do in a method of a subclass?

A) It accesses the methods of the current class

B) It calls a method of the superclass

C) It deletes an instance of a class

D) It creates a new superclass

14. In Python, how do you create a new instance of a class MyClass?

A) MyClass.new()

B) MyClass()

C) new MyClass()

D) MyClass.create()

15. What is the primary purpose of a constructor in a class?

A) To allocate memory for the object

B) To provide default values for object attributes

C) To initialize the object's attributes

D) To define methods for the class

16. What is a destructor in a class?

A) A method that initializes a class

B) A method that deletes an object

C) A method that updates object attributes

D) A method that is automatically called when an object is destroyed

17. Which of the following best describes method overloading?

A) Defining multiple methods with the same name but different

parameters

B) Defining multiple classes with the same name

C) Creating a method that calls another method

D) Using the same method name in both parent and child classes

18. How do you access a class attribute?

A) ClassName.attribute

B) self.attribute

C) ClassName.method()

D) objectName.attribute

19. What is the purpose of the @staticmethod decorator in Python?

A) To define a method that can be called without an instance

B) To define a method that cannot be overridden

C) To define a method that modifies class attributes

D) To define a method that initializes class instances

20. Which of the following statements is true about classes and objects?

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

92 Periyar University – CDOE| Self-Learning Material

A) Classes are instances of objects

B) Objects are instances of classes

C) Classes and objects are the same thing

D) Classes can only have methods, not attributes

21. What is a subclass in OOP?

A) A class that is used to instantiate objects

B) A class that inherits from another class

C) A class that cannot be extended

D) A class with no methods

22. Which of the following is a benefit of using inheritance in OOP?

A) Reduced program execution time

B) Improved code readability and reuse

C) Increased memory usage

D) Simplified syntax

23. How do you define a private attribute in a Python class?

A) Using the private keyword

B) Starting its name with a single underscore _

C) Starting its name with two underscores __

D) Using the protected keyword

24. What is the purpose of the self parameter in class methods?

A) To refer to the class itself

B) To refer to the instance calling the method

C) To refer to a global variable

D) To refer to a local variable

25. Which method in a class is called when an object is created?

A) str

B) init

C) del

D) new

26. What does method overriding allow you to do in OOP?

A) Define multiple methods with the same name in a class

B) Change the implementation of an inherited method

C) Use a method without an instance

D) Prevent a method from being inherited

27. How can you call a parent class method from a child class in Python?

A) ParentClass.method()

B) super().method()

C) self.method()

D) base.method()

28. What is multiple inheritance?

A) A class inheriting from multiple parent classes

B) A class inheriting multiple methods

C) A class with multiple attributes

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

93 Periyar University – CDOE| Self-Learning Material

D) A class with multiple instances

29. Which of the following is a correct way to define a class method in Python?

A) def method(self):

B) def method():

C) def method(cls):

D) def method(static):

30. What does the term "encapsulation" refer to in OOP?

A) The process of defining multiple methods with the same name

B) The bundling of data and methods within a single unit or class

C) The ability to use a single function name for multiple types

D) The act of creating new objects from a class

SECTION 3.2: GRAPHICAL USER INTERFACES
Most of the programs we have done till now are text-based programming. But

many applications need GUI (Graphical User Interface). Python provides several

different options for writing GUI based programs. These are listed below:

 Tkinter: It is easiest to start with. Tkinter is Python's standard GUI (graphical

user interface) package. It is the most commonly used toolkit for GUI

programming in Python.

 JPython: It is the Python platform for Java that is providing Python scripts

seamless access o Java class Libraries for the local machine.

 wxPython: It is an open-source, cross-platform GUI toolkit written in C++. It is

one of the alternatives to Tkinter, which is bundled with Python.

There are many other interfaces available for GUI. But these are the most commonly

used ones. In this, we will learn about the basic GUI programming using Tkinter.

Using Tkinter

It is the standard GUI toolkit for Python. Fredrik Lundh wrote it. For modern Tk binding,

Tkinter is implemented as a Python wrapper for the Tcl Interpreter embedded within

the interpreter of Python. Tk provides the following widgets:

 button

 canvas

 combo-box

 frame

 level

 check-button.

 entry

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

94 Periyar University – CDOE| Self-Learning Material

 level-frame.

 menu

 list - box.

 menu button

 message

 tk_optoinMenu

 progress-bar

 radio button.

 scroll bar

 separator

 tree-view, and many more.

Creating a GUI program using this Tkinter is simple. For this, programmers need to

follow the steps mentioned below:

 Import the module Tkinter

 Build a GUI application (as a window)

 Add those widgets that are discussed above.

 Enter the primary, i.e., the main event's loop for taking action when the user

triggered the event.

Sample program Tkinter:

In this program, it is shown how Tkinter is used via Python to build windows along

with some buttons and the events that are programmed using these buttons.

import tkinter as tk

from tkinter import *

from tkinter import ttk

class karl(Frame):

 def __init__(self):

 tk.Frame.__init__(self)

 self.pack()

 self.master.title("Karlos")

 self.button1 = Button(self, text = "CLICK HERE", width =

25,

 command = self.new_window)

 self. button1.grid(row = 0, column = 1, column span = 2,

sticky = W+E+N+S)

 def new_window(self):

 self.newWindow = karl2()

class karl2(Frame):

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

95 Periyar University – CDOE| Self-Learning Material

 def __init__(self):

 new =tk.Frame.__init__(self)

 new = Top level(self)

 new.title("karlos More Window")

 new.button = tk.Button(text = "PRESS TO CLOSE", width

= 25, command = self.close_window)

 new.button.pack()

 def close_window(self):

 self.destroy()

def main():

 karl().mainloop()

if __name__ == '__main__':

 main ()

Standard attributed for GUI:

 Dimensions

 Fonts

 Colors

 Cursors

 Anchors

 Bitmaps

Methods for geometry management

 The pack (): This method manages the geometry of widgets in blocks.

 The grid (): This method organizes widgets in a tabular structure.

 The place (): This method organizes the widgets to place them in a specific

position.

3.2.1 THE BEHAVIOR OF TERMINAL BASED PROGRAM

Terminal-based programs in Python are programs that interact with the user

through a text-based interface in the terminal or command line. These programs can

be as simple as printing text to the screen or as complex as full-fledged text-based

user interfaces. Below, we will explore the behavior of terminal-based programs in

Python, including input and output operations, argument parsing, and building text-

based user interfaces.

Basic Input and Output

Printing to the Terminal

The print () function is used to display text in the terminal.

Example

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

96 Periyar University – CDOE| Self-Learning Material

print ("Hello, World!")

Reading User Input

The input () function reads a line of text from the terminal.

Example

 name = input ("Enter your name: ")

print (f"Hello, {name}!")

Argument Parsing

Many terminal-based programs accept arguments from the command line. The

argparse module provides a way to handle these arguments.

Using argparse

Example

import argparse

Create the parser

parser = argparse.ArgumentParser(description="A simple example

program")

Add arguments

parser.add_argument('name', type=str, help="Your name")

parser.add_argument('--greet', action='store_true', help="Greet the

user")

Parse the arguments

args = parser.parse_args ()

Use the arguments

if args.greet:

 print (f"Hello, {args.name}!")

else:

 print (f"Name: {args.name}")

Save this script as example.py and run it from the terminal:

 Sh

python example.py John --greet

Output: Hello, John!

TEXT-BASED USER INTERFACES

For more complex terminal-based applications, you can create text-based user

interfaces (TUI) using libraries like curses or textual.

Using curses

The curses module provides functions to create text-based user interfaces.

import curses

def main(stdscr):

 stdscr.clear()

 stdscr.addstr(0, 0, "Hello, Curses!")

 stdscr.refresh()

 stdscr.getkey()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

97 Periyar University – CDOE| Self-Learning Material

curses.wrapper(main)

Run this script, and it will create a simple text-based interface that displays "Hello,

Curses!" and waits for a key press.

Using textual

Textual is a high-level TUI framework that makes creating complex interfaces easier.

from textual.app import App

from textual.widgets import Header, Footer, Button

class MyApp(App):

 async def on_mount(self) -> None:

 await self. view. dock (Header (), edge="top")

 await self. view. dock (Footer (), edge="bottom")

 await self. view. dock(Button ("Click me"), edge="left")

MyApp.run ()

Handling Signals

Terminal-based programs may need to handle signals, such as interrupts (Ctrl+C).

You can handle these using the signal module.

import signal

import sys

def signal_handler(sig, frame):

 print ('You pressed Ctrl+C!')

 sys. exit (0)

signal. signal (signal.SIGINT, signal_handler)

print('Press Ctrl+C')

signal.pause()

Advanced Input Handling

For more advanced input handling, you can use the readline module, which provides

line editing and history capabilities.

import readline

def completer (text, state):

 options = [i for i in ['apple', 'banana', 'grape', 'orange'] if

i.startswith(text)]

 try:

 return options[state]

 except Index Error:

 return None

readline.set_completer(completer)

readline.parse_and_bind('tab: complete')

while True:

 user_input = input ('Enter a fruit: ')

 print(f'You entered: {user_input}')

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

98 Periyar University – CDOE| Self-Learning Material

Terminal-based programs in Python can range from simple scripts that print text and

read user input to complex applications with text-based user interfaces. Key

elements include:

 Basic I/O: Using print () and input().

 Argument Parsing: Using argparse to handle command-line arguments.

 Text-Based UIs: Using libraries like curses and textual.

 Signal Handling: Using the signal module to handle interrupts.

 Advanced Input Handling: Using readline for line editing and history.

By leveraging these tools and techniques, you can create robust and interactive

terminal-based applications in Python.

GRAPHICAL USER INTERFACE

Graphical User Interface (GUI) programs in Python allow users to interact with

applications in a more intuitive way compared to text-based interfaces. These

programs use windows, icons, buttons, and other graphical elements to facilitate user

interaction. Python offers several libraries for creating GUIs, with tkinter being the most

commonly used due to its inclusion with Python. Other popular libraries include PyQt,

wxPython, and Kivy. Below, I'll provide an overview of creating GUI-based programs

with tkinter, followed by brief introductions to PyQt and Kivy.

Using tkinter

Step 1: Importing tkinter

First, import the tkinter module.

import tkinter as tk

from tkinter import message box

Step 2: Creating the Main Window

Create the main application window.

root = tk.Tk()

root.title("Simple GUI")

root.geometry("300x200")

Step 3: Adding Widgets

Label

label = tk.Label(root, text="Hello, Tkinter!")

label.pack(pady=10)

Button

def on_button_click():

 messagebox.showinfo("Information", "Button clicked!")

button = tk.Button(root, text="Click Me", command=on_button_click)

button.pack(pady=10)

Entry (Text Field)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

99 Periyar University – CDOE| Self-Learning Material

entry = tk.Entry(root)

entry.pack(pady=10)

Step 4: Running the Main Event Loop

The event loop keeps the application running and waits for user interactions.

root.mainloop()

Complete tkinter Example

Here’s a complete example that includes a label, a button, and a text field:

import tkinter as tk

from tkinter import message box

def on_button_click ():

 user_input = entry.get ()

 messagebox.showinfo("Information", f"You entered: {user_input}")

Create the main window

root = tk.Tk()

root.title("Simple GUI")

root.geometry("300x200")

Add a label

label = tk.Label(root, text="Hello, Tkinter!")

label.pack(pady=10)

Add an entry (text field)

entry = tk.Entry(root)

entry.pack(pady=10)

Add a button

button = tk.Button(root, text="Click Me", command=on_button_click)

button.pack(pady=10)

Run the main event loop

root.mainloop()

Using PyQt

PyQt is a set of Python bindings for the Qt application framework, allowing you to

create sophisticated and visually appealing GUIs.

Installation

pip install PyQt5

Basic Example:

import sys

from PyQt5. QtWidgets import QApplication, QWidget, QLabel,

QPushButton, QVBoxLayout, QLineEdit, QMessageBox

def on_button_click():

 user_input = entry.text()

 QMessageBox. Information (window, "Information", f"You entered:

{user_input}")

app = QApplication(sys.argv)

window = QWidget ()

window.setWindowTitle('Simple PyQt5 GUI')

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

100 Periyar University – CDOE| Self-Learning Material

window.setGeometry(100, 100, 300, 200)

layout = QVBoxLayout()

label = QLabel('Hello, PyQt5!')

layout.addWidget(label)

entry = QLineEdit()

layout.addWidget(entry)

button = QPushButton('Click Me')

button.clicked.connect(on_button_click)

layout.addWidget(button)

window.setLayout(layout)

window. show ()

sys.exit(app.exec_())

Using Kivy

Kivy is an open-source Python library for developing multitouch applications. It

is great for creating applications with advanced user interfaces.

Installation

pip install kivy

Basic Example

from kivy.app import App

from kivy.uix.label import Label

from kivy.uix.button import Button

from kivy.uix.textinput import TextInput

from kivy.uix.boxlayout import BoxLayout

from kivy.uix.popup import Popup

class MyApp(App):

 def build(self):

 layout = BoxLayout(orientation='vertical', padding=10,

spacing=10)

 self.label = Label(text="Hello, Kivy!")

 layout.add_widget(self.label)

 self.text_input = TextInput(hint_text="Enter something")

 layout.add_widget(self.text_input)

 button = Button (text="Click Me")

 button.bind(on_press=self.on_button_click)

 layout.add_widget(button)

 return layout

 def on_button_click(self, instance):

 user_input = self.text_input.text

 popup = Popup(title='Information',

 content=Label(text=f"You entered: {user_input}"),

 size_hint=(None, None), size=(200, 200))

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

101 Periyar University – CDOE| Self-Learning Material

 popup.open()

if __name__ == '__main__':

 MyApp().run()

 tkinter: Best for simple to moderately complex GUIs. It is included with

Python and is easy to use.

 PyQt: Excellent for complex and feature-rich applications. It offers a wide

range of tools and a modern look.

 Kivy: Ideal for applications with innovative user interfaces and multi-touch

support. Great for mobile applications.

By selecting the appropriate library for your needs, you can create powerful and

user-friendly GUI applications in Python. Each of these libraries has extensive

documentation and communities to help you get started and troubleshoot any issues

you might encounter.

3.2.2– CODING SIMPLE GUI BASED PROGRAMS

Creating simple GUI-based programs in Python is straightforward with libraries

like tkinter, PyQt, and Kivy. Below, I'll guide you through the process of building a

simple GUI with each of these libraries. Each example will include a window with a

label, a text entry field, and a button that, when clicked, displays the text entered by

the user in a message box or popup.

Simple GUI with tkinter

First, let's create a simple GUI using tkinter.

Step-by-Step Guide

1. Import tkinter.

2. Create the main window.

3. Add widgets (Label, Entry, Button)

4. Define the button click event handler.

5. Run the main event loop.

import tkinter as tk

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

102 Periyar University – CDOE| Self-Learning Material

from tkinter import messagebox

def on_button_click():

 user_input = entry.get()

 messagebox.showinfo("Information", f"You entered: {user_input}")

Create the main window

root = tk.Tk()

root.title("Simple GUI")

root.geometry("300x200")

Add a label

label = tk.Label(root, text="Enter something:")

label.pack(pady=10)

Add an entry (text field)

entry = tk.Entry(root)

entry.pack(pady=10)

Add a button

button = tk.Button(root, text="Click Me", command=on_button_click)

button.pack(pady=10)

Run the main event loop

root.mainloop()

Simple GUI with PyQt

Next, we'll create a similar GUI using PyQt.

Step-by-Step Guide

1. Install PyQt

pip install PyQt5

2.Import PyQt5 modules

3.Create the main application and window

 4.Add widgets (Label, Entry, Button)

5.Define the button click event handler

6.Run the application

import sys

from PyQt5.QtWidgets import QApplication, QWidget, QLabel,

QPushButton, QVBoxLayout, QLineEdit, QMessageBox

def on_button_click():

 user_input = entry.text ()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

103 Periyar University – CDOE| Self-Learning Material

 QMessageBox.information(window, "Information", f"You entered:

{user_input}")

Create the main application

app = QApplication(sys.argv)

Create the main window

window = QWidget ()

window.setWindowTitle('Simple PyQt5 GUI')

window.setGeometry(100, 100, 300, 200)

Create a layout

layout = QVBoxLayout()

Add a label

label = QLabel ('Enter something:')

layout.addWidget(label)

Add an entry (text field)

entry = QLineEdit ()

layout.addWidget(entry)

Add a button

button = QPush Button('Click Me')

button.clicked.connect(on_button_click)

layout.addWidget(button)

Set the layout and show the window

window.setLayout(layout)

window.show()

Run the application

sys.exit(app.exec_())

Simple GUI with Kivy

Lastly, we'll create a simple GUI using Kivy.

Step-by-Step Guide

1. Install Kivy

pip install kivy

1. Import Kivy modules

2. Create the main application class

3. Add widgets (Label, TextInput, Button)

4. Define the button click event handler

5. Run the application

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

104 Periyar University – CDOE| Self-Learning Material

from kivy.app import App

from kivy.uix.label import Label

from kivy.uix.button import Button

from kivy.uix.textinput import TextInput

from kivy.uix.boxlayout import BoxLayout

from kivy.uix.popup import Popup

class MyApp(App):

 def build(self):

 layout = BoxLayout (orientation='vertical', padding=10,

spacing=10)

 self.label = Label (text="Enter something:")

 layout.add_widget(self.label)

 self.text_input = TextInput (hint_text="Enter something")

 layout.add_widget(self.text_input)

 button = Button (text="Click Me")

 button.bind(on_press=self.on_button_click)

 layout.add_widget(button)

 return layout

 def on_button_click (self, instance):

 user_input = self.text_input.text

 popup = Popup (title='Information',

 content=Label (text=f"You entered: {user_input}"),

 size_hint= (None, None), size= (200, 200))

 popup.open()

if __name__ == '__main__':

 MyApp(). run()

By using these libraries, you can quickly create simple GUI applications in Python:

 tkinter: Great for simple applications and is included with Python.

 PyQt: Ideal for more advanced applications with a polished look.

 Kivy: Perfect for touch applications and cross-platform development.

Each example demonstrates how to create a main window, add basic widgets (Label,

Entry, Button), handle button clicks, and display user input. This should give you a

solid foundation to build upon for more complex GUI applications.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

105 Periyar University – CDOE| Self-Learning Material

3.2.3– WINDOWS AND WINDOW COMPONENTS

Tkinter Widget

There are a number of widgets which you can put in your tkinter application.

Some of the major widgets are explained below:

1. Label

It refers to the display box where you can put any text or image which can be

updated any time as per the code. The general syntax is:

w=Label(master, option=value)

master is the parameter used to represent the parent window.

from tkinter import *

root = Tk()

w = Label(root, text='GeeksForGeeks.org!')

w.pack()

root.mainloop()

Output

2. Button

To add a button in your application, this widget is used. The general syntax

is:

w=Button(master, option=value)

master is the parameter used to represent the parent window. There are number of

options which are used to change the format of the Buttons. Number of options can

be passed as parameters separated by commas.

import tkinter as tk

r = tk.Tk()

r.title('Counting Seconds')

https://www.geeksforgeeks.org/what-are-widgets-in-tkinter/
https://www.geeksforgeeks.org/python-tkinter-label/
https://www.geeksforgeeks.org/python-creating-a-button-in-tkinter/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

106 Periyar University – CDOE| Self-Learning Material

button = tk.Button(r, text='Stop', width=25, command=r.destroy)

button.pack()

r.mainloop()

Output

3. Entry

It is used to input the single line text entry from the user.. For multi-line text

input, Text widget is used. The general syntax is:

w=Entry(master, option=value)

master is the parameter used to represent the parent window. There are number of

options which are used to change the format of the widget. Number of options can

be passed as parameters separated by commas. Some of them are listed below.

from tkinter import *

master = Tk()

Label(master, text='First Name').grid(row=0)

Label(master, text='Last Name').grid(row=1)

e1 = Entry(master)

e2 = Entry(master)

e1.grid(row=0, column=1)

e2.grid(row=1, column=1)

mainloop()

Output

4. Check Button

To select any number of options by displaying a number of options to a user

as toggle buttons. The general syntax is:

w = CheckButton (master, option=value)

https://www.geeksforgeeks.org/python-tkinter-entry-widget/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

107 Periyar University – CDOE| Self-Learning Material

There are number of options which are used to change the format of this widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

master = Tk ()

var1 = IntVar ()

check button (master, text='male', variable=var1).grid(row=0, sticky=W)

var2 = IntVar ()

Check button (master, text='female', variable=var2).grid(row=1, sticky=W)

mainloop ()

Output

5. Radio Button

It is used to offer multi-choice option to the user. It offers several options to

the user and the user has to choose one option. The general syntax is:

w = Radio Button(master, option=value)

There are number of options which are used to change the format of this widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

root = Tk()

v = IntVar ()

Radio button (root, text='GfG', variable=v, value=1). pack(anchor=W)

Radio button (root, text='MIT', variable=v, value=2). pack(anchor=W)

mainloop ()

Output

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

108 Periyar University – CDOE| Self-Learning Material

6. List box

It offers a list to the user from which the user can accept any number of

options. The general syntax is:

w = List box(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

top = Tk()

Lb = List box(top)

Lb.insert(1, 'Python')

Lb.insert(2, 'Java')

Lb.insert(3, 'C++')

Lb.insert(4, 'Any other')

Lb.pack()

top.mainloop()

Output

7. Scrollbar

It refers to the slide controller which will be used to implement listed widgets.

The general syntax is:

w = Scrollbar (master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

https://www.geeksforgeeks.org/python-tkinter-scrollbar/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

109 Periyar University – CDOE| Self-Learning Material

root = Tk()

scrollbar = Scrollbar(root)

scrollbar.pack(side=RIGHT, fill=Y)

mylist = List box (root, yscrollcommand=scrollbar.set)

for line in range(100):

 mylist.insert(END, 'This is line number' + str(line))

 mylist.pack(side=LEFT, fill=BOTH)

scrollbar.config(command=mylist.yview)

mainloop ()

Output

8. Menu

It is used to create all kinds of menus used by the application. The general

syntax is:

w = Menu (master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the format of this widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

root = Tk()

menu = Menu(root)

root.config(menu=menu)

filemenu = Menu(menu)

menu.add_cascade(label='File', menu=filemenu)

filemenu.add_command(label='New')

filemenu.add_command(label='Open...')

filemenu.add_separator()

filemenu.add_command(label='Exit', command=root.quit)

help menu = Menu(menu)

menu.add_cascade (label='Help', menu=help menu)

helpmenu.add_command(label='About')

https://www.geeksforgeeks.org/python-menu-widget-in-tkinter/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

110 Periyar University – CDOE| Self-Learning Material

mainloop ()

Output

9. Combobox

Combo box widget is created using the ttk. Combo box class from the

tkinter.ttk module. The values for the Combo box are specified using the values

parameter. The default value is set using the set method. An event handler function

on_select is bound to the Combo box using the bind method, which updates a label

with the selected item whenever an item is selected.

import tkinter as tk

from tkinter import ttk

def on_select(event):

selected_item = combo_box.get ()

 label.config (text="Selected Item: " + selected_item)

root = tk.Tk()

root.title("Combobox Example")

Create a label

label = tk.Label(root, text="Selected Item: ")

label.pack(pady=10)

Create a Combobox widget

combo_box = ttk.Combobox(root, values=["Option 1", "Option 2",

"Option 3"])

combo_box.pack(pady=5)

Set default value

combo_box.set ("Option 1")

Bind event to selection

https://www.geeksforgeeks.org/combobox-widget-in-tkinter-python/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

111 Periyar University – CDOE| Self-Learning Material

combo_box.bind("<<ComboboxSelected>>", on_select)

root.mainloop()

Output

10. Scale

It is used to provide a graphical slider that allows to select any value from

that scale. The general syntax is:

w = Scale (master, option=value) master is the parameter used to represent the

parent window.

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

master = Tk ()

w = Scale (master, from_=0, to=42)

w.pack()

w = Scale (master, from_=0, to=200, orient=HORIZONTAL)

w.pack()

mainloop ()

Output

https://www.geeksforgeeks.org/python-tkinter-scale-widget/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

112 Periyar University – CDOE| Self-Learning Material

11. Top Level

This widget is directly controlled by the window manager. It don’t need any

parent window to work on. The general syntax is:

w = Top Level (master, option=value)

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

root = Tk ()

root. title('GfG')

top = Top level ()

top. Title('Python')

top. mainloop ()

Output

12. Message

It refers to the multi-line and non-editable text. It works same as that of Label.

The general syntax is:

w = Message (master, option=value)

master is the parameter used to represent the parent window.

https://www.geeksforgeeks.org/python-tkinter-message/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

113 Periyar University – CDOE| Self-Learning Material

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

main = Tk()

ourMessage = 'This is our Message'

messageVar = Message(main, text=ourMessage)

messageVar.config(bg='lightgreen')

messageVar.pack()

main. mainloop ()

Output

13. Menu Button

It is a part of top-down menu which stays on the window all the time. Every

menu button has its own functionality. The general syntax is:

w = Menu Button (master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

top = Tk()

mb = Menubutton (top, text = "GfG")

mb.grid()

mb. menu = Menu (mb, tearoff = 0)

mb["menu"] = mb.menu

cVar = IntVar()

aVar = IntVar()

mb.menu.add_checkbutton (label ='Contact', variable = cVar)

mb.menu.add_checkbutton (label = 'About', variable = aVar)

mb.pack()

top. mainloop()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

114 Periyar University – CDOE| Self-Learning Material

Output:

14. Progress bar

Tkinter application with a Progress bar widget and a button to start the

progress. When the button is clicked, the progress bar fills up to 100% over a short

period, simulating a task that takes time to complete.

 import tkinter as tk

 from tkinter import ttk

 import time

 def start_progress():

 progress.start()

Simulate a task that takes time to complete

 for i in range(101):

Simulate some work

 time.sleep(0.05)

 progress['value'] = i

Update the GUI

 root.update_idletasks()

 progress. stop()

 root = tk. Tk()

 root.title("Progressbar Example")

Create a progress bar widget

 progress = ttk. Progressbar (root, orient="horizontal", length=300,

mode="determinate")

 progress. Pack(pady=20)

Button to start progress

 start_button = tk. Button (root, text="Start Progress",

command=start_progress)

 start_button. Pack(pady=10)

 root. mainloop ()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

115 Periyar University – CDOE| Self-Learning Material

Output:

15. Spin Box

It is an entry of ‘Entry’ widget. Here, value can be input by selecting a fixed

value of numbers. The general syntax is:

w = Spin Box(master, option=value)

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

master = Tk ()

w = Spin box (master, from_=0, to=10)

w. pack ()

mainloop ()

Output:

16. Text

To edit a multi-line text and format the way it has to be displayed. The

general syntax is:

w =Text(master, option=value)

There are number of options which are used to change the format of the text.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

root = Tk ()

T = Text (root, height=2, width=30)

T. pack ()

T. insert (END, 'GeeksforGeeks\nBEST WEBSITE\n')

mainloop ()

https://www.geeksforgeeks.org/python-tkinter-text-widget/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

116 Periyar University – CDOE| Self-Learning Material

Output

17. Canvas

It is used to draw pictures and other complex layout like graphics, text and

widgets. The general syntax is:

w = Canvas (master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the format of the widget.

Number of options can be passed as parameters separated by commas. Some of

them are listed below.

from tkinter import *

master = Tk ()

w = Canvas (master, width=40, height=60)

w. pack ()

canvas_height=20

canvas_width=200

y = int (canvas_height / 2)

w. create_line (0, y, canvas_width, y)

main loop ()

Output

18. Panned Window

It is a container widget which is used to handle number of panes arranged in

it. The general syntax is:

w = Panned Window (master, option=value)

Master is the parameter used to represent the parent window. There are number of

options which are used to change the format of the widget. Number of options can

be passed as parameters separated by commas. Some of them are listed below.

from tkinter import *

m1 = Paned Window ()

m1. pack (fill=BOTH, expand=1)

left = Entry (m1, bd=5)

https://www.geeksforgeeks.org/python-tkinter-canvas-widget/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

117 Periyar University – CDOE| Self-Learning Material

m1.add(left)

m2 = Paned Window (m1, orient=VERTICAL)

m1.add(m2)

top = Scale (m2, orient=HORIZONTAL)

m2.add(top)

mainloop ()

Output

Color Option in Tkinter

This example demonstrates the usage of various color options in Tkinter

widgets, including active background and foreground colours, background and

foreground colours, disabled state colors, and selection colors. Each widget in the

example showcases a different color option, providing a visual representation of how

these options affect the appearance of the widgets.

 import tkinter as tk

 root = tk. Tk ()

 root. title ("Color Options in Tkinter")

Create a button with active background and foreground colors

 button = tk. Button (root, text="Click Me", active background="blue",

active foreground="white")

 button. pack ()

Create a label with background and foreground colors

 label = tk. Label (root, text="Hello, Tkinter!", bg="light Gray", fg="black")

 label. pack ()

Create an Entry widget with selection colors

 entry = tk. Entry (root, select background="light blue", select

foreground="black")

 entry. pack ()

 root. mainloop ()

Output

Learn more to Improve Font: Tkinter Font

https://www.geeksforgeeks.org/tkinter-colors/
https://www.geeksforgeeks.org/tkinter-fonts/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

118 Periyar University – CDOE| Self-Learning Material

Geometry Management

Tkinter also offers access to the geometric configuration of the widgets

which can organize the widgets in the parent windows. There are mainly three

geometry manager classes class.

pack () method.

It organizes the widgets in blocks before placing in the parent widget.

 import tkinter as tk

 root = tk. Tk()

 root. title ("Pack Example")

Create three buttons

 button1 = tk. Button (root, text="Button 1")

 button2 = tk. Button (root, text="Button 2")

 button3 = tk. Button (root, text="Button 3")

Pack the buttons vertically

 button1.pack()

 button2.pack()

 button3.pack()

 root.mainloop()

Output

grid () method

It organizes the widgets in grid (table-like structure) before placing in the parent

widget.

 import tkinter as tk

 root = tk.Tk()

 root.title("Grid Example")

Create three labels

 label1 = tk.Label(root, text="Label 1")

 label2 = tk.Label(root, text="Label 2")

 label3 = tk.Label(root, text="Label 3")

Grid the labels in a 2x2 grid

 label1.grid(row=0, column=0)

 label2.grid(row=0, column=1)

 label3.grid(row=1, column=0, column span=2)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

119 Periyar University – CDOE| Self-Learning Material

 root. mainloop()

Output

place () method

It organizes the widgets by placing them on specific positions directed by the

programmer.

 import tkinter as tk

 root = tk. Tk ()

 root. title ("Place Example")

Create a label

 label = tk. Label (root, text="Label")

Place the label at specific coordinates

 label. place (x=50, y=50)

 root. mainloop ()

Output

3.2.4– COMMAND BUTTONS AND RESPONDING TO EVENTS

Creating command buttons and responding to events in a GUI application is a

fundamental aspect of graphical user interface (GUI) programming. Here's a simplified

example using Python's Tkinter library:

import tkinter as tk

Function to handle button click event

def on_button_click():

 label.config(text="Button Clicked!")

Create main window

root = tk.Tk()

root.title("Command Buttons Example")

Create label

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

120 Periyar University – CDOE| Self-Learning Material

label = tk.Label(root, text="Click the button")

label.pack(pady=10)

Create command button

button = tk.Button(root, text="Click Me", command=on_button_click)

button.pack()

Run the application

root.mainloop()

Explanation:

First, we import the tkinter module as tk.

We define a function on_button_click() to handle the button click event. In this

example, it simply changes the text of a label widget.

We create the main window using tk.Tk() and set its title.

Next, we create a label widget (tk.Label()) to display text and pack it into the main

window with some padding.

Then, we create a command button (tk.Button()) with the text "Click Me" and specify

the command parameter to call the on_button_click() function when the button is

clicked.

Finally, we start the GUI application by calling the mainloop() method on the main

window.

When the button is clicked, the on_button_click() function is invoked, updating the

label text accordingly. This demonstrates how to create command buttons and

respond to events in a Tkinter-based GUI application.

Let Us Sum Up

In this unit, we explored fundamental Python programming concepts, including

object-oriented design, data modeling, and graphical user interface (GUI)

development. We learned to create custom data structures using classes, implement

inheritance and polymorphism for class hierarchies, and design GUI applications using

Tkinter. Through hands-on exercises, we practiced building GUI-based programs with

windows, widgets, and event-driven functionality, including command buttons and

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

121 Periyar University – CDOE| Self-Learning Material

event handling. This unit equipped us with essential skills to structure classes

effectively, model data structures, and develop interactive GUI applications, laying a

solid foundation for further exploration in Python programming and software

development.

Check Your Progress

1. What is the primary difference between terminal-based programs and GUI-

based programs?

A) GUI-based programs are faster

B) Terminal-based programs use graphical elements

C) GUI-based programs use graphical elements

D) Terminal-based programs are easier to use

2. Which of the following is a common library used for creating GUI-based

programs in Python?

A) NumPy

B) Matplotlib

C) Tkinter

D) Pandas

3. What is the main component of a window in a GUI-based program?

A) Terminal

B) Canvas

C) Widget

D) Event

4. In Tkinter, which method is used to start the main event loop?

A) mainloop()

B) start()

C) run()

D) execute()

5. What is the purpose of an event in a GUI-based program?

A) To create a window

B) To handle user interactions

C) To design the interface

D) To execute background tasks

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

122 Periyar University – CDOE| Self-Learning Material

6. Which of the following is a common type of widget in GUI-based

programming?

A) Label

B) Array

C) Dictionary

D) Tuple

7. How do you create a button in Tkinter?

A) Button(window)

B) window.Button()

C) TkButton(window)

D) create_button(window)

8. What is the function of a callback in GUI programming?

A) To handle errors

B) To execute code in response to an event

C) To update the GUI

D) To initialize the GUI

9. Which of the following is an example of an event in GUI programming?

A) Opening a file

B) Clicking a button

C) Printing to the console

D) Sorting a list

10. What is the purpose of the pack() method in Tkinter?

A) To handle events

B) To arrange widgets in a window

C) To create a new widget

D) To start the main loop

11. How do you create a label in Tkinter?

A) Label(window, text="Hello")

B) window.Label(text="Hello")

C) TkLabel(window, text="Hello")

D) create_label(window, "Hello")

12. Which method is used to place widgets at specific coordinates in Tkinter?

A) pack()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

123 Periyar University – CDOE| Self-Learning Material

B) grid()

C) place()

D) position()

13. What does GUI stand for?

A) General User Interface

B) Graphical User Interface

C) General Utility Interface

D) Graphical Utility Interface

14. In a GUI-based program, what is an event loop?

A) A loop that waits for and dispatches events or messages in a program

B) A function that initializes the GUI

C) A method to create widgets

D) A process to handle errors

15. What is the primary purpose of a command button in a GUI?

A) To display text

B) To receive user input

C) To execute a command or function

D) To create a new window

16. How do you set the title of a Tkinter window?

A) window.setTitle("Title")

B) window.title("Title")

C) setTitle(window, "Title")

D) set_window_title("Title")

17. What is the purpose of the bind() method in Tkinter?

A) To bind data to a widget

B) To bind an event to a function

C) To create a new widget

D) To start the main loop

18. Which of the following widgets is commonly used to allow the user to input

text in Tkinter?

A) Label

B) Entry

C) Button

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

124 Periyar University – CDOE| Self-Learning Material

D) Frame

19. How do you create a window in Tkinter?

A) window = Tkinter()

B) window = Window()

C) window = Tk()

D) window = CreateWindow()

20. What is the primary difference between pack() and grid() methods in

Tkinter?

A) pack() arranges widgets in columns and rows; grid() stacks them

vertically

B) pack() stacks widgets vertically; grid() arranges them in columns and

rows

C) pack() and grid() are used for different types of widgets

D) pack() is used to create widgets; grid() is used to handle events

21. Which widget is used to create a menu bar in a Tkinter window?

A) Menu

B) Label

C) Button

D) Entry

22. What is the purpose of the after() method in Tkinter?

A) To execute a function after a specified time delay

B) To create a new widget

C) To start the main event loop

D) To handle errors

23. How do you close a Tkinter window?

A) window.close()

B) window.destroy()

C) close(window)

D) window.quit()

24. Which widget in Tkinter is used to create a scrollable list?

A) Listbox

B) Entry

C) Scrollbar

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

125 Periyar University – CDOE| Self-Learning Material

D) Text

25. What is the purpose of the withdraw() method in Tkinter?

A) To close the window

B) To minimize the window

C) To hide the window without destroying it

D) To maximize the window

26. How do you update the text of a label in Tkinter?

A) label.setText("New Text")

B) label.updateText("New Text")

C) label.config(text="New Text")

D) label.changeText("New Text")

27. Which of the following methods is used to change the background color of a

widget in Tkinter?

A) widget.bgcolor("color")

B) widget.config(bg="color")

C) widget.setBackground("color")

D) widget.setColor("color")

28. How do you create a pop-up message box in Tkinter?

A) messagebox.show("Message")

B) popup.showinfo("Title", "Message")

C) messagebox.showinfo("Title", "Message")

D) popup.message("Title", "Message")

29. Which of the following methods is used to make a widget visible in Tkinter?

A) widget.show()

B) widget.display()

C) widget.pack()

D) widget.present()

30. What is the function of the focus_set() method in Tkinter?

A) To highlight a widget

B) To set the focus on a widget

C) To create a new widget

D) To start the main loop

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

126 Periyar University – CDOE| Self-Learning Material

Unit Summary

In this unit, we delved into essential concepts of Python programming,

encompassing object-oriented principles, GUI development, and event-driven

programming. From understanding classes, inheritance, and polymorphism to building

graphical user interfaces using Tkinter, learners explored the intricacies of structuring

classes, modeling data, and responding to user interactions. Through practical

exercises, they gained proficiency in designing interactive GUI-based programs,

mastering the creation of windows, window components, command buttons, and event

Handling, setting a solid foundation for advanced python application development.

Glossary

 Class: A blueprint for creating objects in Python, defining attributes and

methods.

 Object: An instance of a class, encapsulating data and behavior.

 Inheritance: The mechanism by which a class can inherit attributes and

methods from another class.

 Polymorphism: The ability of different classes to be treated as instances of a

common superclass, enabling flexibility and code reuse.

 Constructor: A special method in Python (__init__) used to initialize object

state when an instance is created.

 Encapsulation: The bundling of data and methods that operate on the data,

hiding implementation details from the outside world.

 Method: A function defined within a class, associated with instances of the

class.

 Superclass: A class from which other classes inherit properties and behaviors.

 Subclass: A class that inherits properties and behaviors from a superclass.

 Instance Variable: A variable associated with a specific instance of a class.

 GUI (Graphical User Interface): A type of interface that allows users to interact

with electronic devices through graphical icons and visual indicators.

 Event Handling: The process of responding to user actions or system events,

such as button clicks or mouse movements, in a GUI application.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

127 Periyar University – CDOE| Self-Learning Material

 Tkinter: A standard GUI toolkit for Python, providing a set of modules for

creating graphical user interfaces.

 Button: A GUI widget used to trigger an action when clicked by the user.

 Event: An action or occurrence detected by a program, typically requiring some

response or processing.

 Event Handler: A function or method that is executed in response to a specific

event, such as a button click or keypress.

 Widget: A graphical component used to interact with the user in a GUI

application, such as buttons, labels, or entry fields.

Self – Assessment Questions

 1.Evaluate the importance of inheritance in object-oriented programming. How

does it promote code reusability and maintainability?

2. Analyze the concept of polymorphism in Python. How does it enable flexibility

in programming and enhance code readability?

3. Compare and contrast encapsulation and inheritance. How do they contribute

to building robust and modular software systems?

4. Explain the significance of constructors in Python classes. How are they used

to initialize object state and ensure proper object creation?

5. Elucidate the role of event handling in GUI-based programming. How does it

enable interactive user interfaces and responsiveness in applications?

6. Evaluate the advantages and disadvantages of using Tkinter for GUI

development in Python compared to other libraries such as PyQt or wxPython.

7. Analyze the process of binding event handlers to GUI widgets in Tkinter. How

does it facilitate the handling of user interactions in graphical applications?

8. Compare and contrast GUI-based programming with terminal-based

programming. What are the key differences in their user interaction paradigms

and development approaches?

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

128 Periyar University – CDOE| Self-Learning Material

Activities / Exercises / Case Studies

Activities

1. Task students with designing a class hierarchy for a real-world scenario, such as a

library management system or a banking application. Encourage them to incorporate

concepts like inheritance, encapsulation, and polymorphism.

2. Divide students into groups and assign each group a real-world scenario. For

example, one group could focus on vehicles (Car, Truck, Bicycle), while another group

could focus on animals (Dog, Cat, Bird). Students should identify common attributes

and behaviours and design a class hierarchy showcasing inheritance relationships.

3. Organize a code review session where students evaluate each other's code for

adherence to object-oriented principles and best practices. Encourage constructive

feedback and discussions on how to improve code quality and design. This activity

promotes collaboration and peer learning.

4. Provide a superclass with several methods and ask students to create subclasses

that override these methods with their own implementations. Encourage them to

demonstrate how method overriding enables customization and flexibility in class

behavior

Exercise:

1. Provide a set of classes representing different shapes (e.g., Circle, Square,

Triangle) with a common method calculate_area(). Ask students to create instances

of these classes and demonstrate polymorphic behavior by calling the calculate_area()

method on each object.

2. Provide a set of GUI widgets (e.g., Button, Entry, Label) and ask students to create

a simple Tkinter application. They should implement event handlers for various user

interactions, such as button clicks or text entry events. This exercise helps reinforce

the understanding of event-driven programming.

CASE STUDY:

1. Present a case study where students are required to develop a simple GUI-based

application using Tkinter. Provide a scenario such as a to-do list manager or a

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

129 Periyar University – CDOE| Self-Learning Material

calculator. Students should design the GUI layout, implement event handlers for user

interactions, and ensure the application's responsiveness.

2. Present a case study involving sensitive data handling, such as a user

authentication system or a banking transaction system. Students should design

classes that encapsulate sensitive data and methods for secure access. Emphasize

the importance of encapsulation in maintaining data integrity and security.

3. Provide a partially implemented Tkinter application and ask students to enhance its

functionality. For example, they could add new features, improve user interface design,

or optimize event handling. This case study encourages students to apply their

knowledge to real-world application scenarios.

Answers for check your progress

Module

s

S. No. Answers

Module

1

 1. B) To organize code and encapsulate data and behavior

 2. B) An instance of a class

3. A) The process of creating new classes from existing ones

 4. A) class

5. B) The ability to use a single function name for multiple types

6. C) To initialize a new object instance

7. C) The current instance of the class

8. B) obj.myMethod()

9. B) The bundling of data and methods into a single unit

10. B) A variable that is shared among all instances of a class

11. A) str

12. B) By using the final keyword

13. B) It calls a method of the superclass

14. B) MyClass()

15. C) To initialize the object's attributes

16. D) A method that is automatically called when an object is

destroyed

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

130 Periyar University – CDOE| Self-Learning Material

17. A) Defining multiple methods with the same name but different

parameters

18. A) ClassName.attribute

19. A) To define a method that can be called without an instance

20. B) Objects are instances of classes

21. B) A class that inherits from another class

22. B) Improved code readability and reuse

23. C) Starting its name with two underscores __

24. B) To refer to the instance calling the method

25. B) init

26. B) Change the implementation of an inherited method

27. B) super().method()

28. A) A class inheriting from multiple parent classes

29. C) def method(cls):

30. B) The bundling of data and methods within a single unit or class

Module

2.

1. C) GUI-based programs use graphical elements

2. C) Tkinter

3. C) Widget

4. A) mainloop()

5. B) To handle user interactions

6. A) Label

7. A) Button(window)

8. B) To execute code in response to an event

9. B) Clicking a button

10. B) To arrange widgets in a window

11. A) Label(window, text="Hello")

12. C) place()

13. B) Graphical User Interface

14. A) A loop that waits for and dispatches events or messages in a

program

15. C) To execute a command or function

16. B) window.title("Title")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

131 Periyar University – CDOE| Self-Learning Material

17. B) To bind an event to a function

18. B) Entry

19. C) window = Tk()

20. B) pack() stacks widgets vertically; grid() arranges them in

columns and rows

21. A) Menu

22. A) To execute a function after a specified time delay

23. B) window.destroy()

24. A) Listbox

25. C) To hide the window without destroying it

26. C) label.config(text="New Text")

27. B) widget.config(bg="color")

28. C) messagebox.showinfo("Title", "Message")

29. C) widget.pack()

30. B) To set the focus on a widget

Suggested Readings

1. Ramalho, L. (2022). Fluent python. " O'Reilly Media, Inc.".

2. Sweigart, A. (2019). Automate the boring stuff with Python: practical

programming for total beginners. no starch press.

3. Lutz, M. (2013). Learning python: Powerful object-oriented programming. "

O'Reilly Media, Inc.".

Open-Source E-Content Links

1. https://docs.python.org/3/

2. https://www.w3schools.com/python/

3. https://www.geeksforgeeks.org/python-programming-language-tutorial/

4. https://realpython.com/python3-object-oriented-programming/

5. https://docs.python.org/3/library/tkinter.html

https://docs.python.org/3/
https://www.w3schools.com/python/
https://www.geeksforgeeks.org/python-programming-language-tutorial/
https://realpython.com/python3-object-oriented-programming/
https://docs.python.org/3/library/tkinter.html

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

132 Periyar University – CDOE| Self-Learning Material

References

1. EdX: Introduction to Computer Science and Programming Using Python

2. Coursera: Python for Everybody Specialization

3. Codecademy Python Course

4. Coursera: Python for Everybody Specialization

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

132 Periyar University – CDOE| Self-Learning Material

Working With Python Packages

UNIT IV – WORKING WITH PYTHON PACKAGES

Unit IV: Working with Python Packages: NumPy Library-Ndarray- Basic Operations -

Indexing, Slicing and Iteration - Array manipulation - Pandas - The Series - The

DataFrame - The Index Objects - Data Vizualization with Matplotlib- The Matplotlib

Architecture -Pyplot- The Plotting Window - Adding Elements to the Chart - Line

Charts - Bar Charts - Pie charts

Section Topic Page No.

UNIT – IV

Unit Objectives

Section

4.1
Working With Python Packages 133

4.1.1 Working with Python Packages 133

4.1.2 Numpy Library 134

4.1.3 Ndarray 136

4.1.4 Basic Operations : Indexing , Slicing and Iteration 138

4.1.5 Array Manipulation 143

 Let Us Sum Up 146

 Check Your Progress 146

Section

4.2
Pandas 147

4.2.1 The Series, The Dataframe 152

4.2.3 The Index Objects 155

 Let Us Sum Up 159

 Check Your Progress 159

Section

4.3
Data Visualization with Matplotlib 164

4.3.1 The Matplotlib Architecture- Pyplot 169

4.3.2 The Plotting Window - Adding Elements to the Chart 173

4.3.3 Line Charts – Bar Charts – Pie Charts 176

 Let Us Sum Up 178

 Check Your Progress 178

4.4 Unit- Summary 183

4.5 Glossary 183

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

133 Periyar University – CDOE| Self-Learning Material

UNIT OBJECTIVES

This unit aims to provide a comprehensive understanding of essential Python

packages used in data analysis and visualization. Students will learn to effectively use

the NumPy library for handling large multi-dimensional arrays and performing basic

operations such as indexing, slicing, and iteration. They will gain skills in manipulating

arrays to suit various data processing needs. The course will introduce Pandas for

data manipulation and analysis, focusing on key components like Series, DataFrame,

and Index objects. Additionally, students will explore data visualization techniques

using Matplotlib, learning about its architecture and how to use Pyplot to create and

customize various types of charts including line charts, bar charts, and pie charts. By

the end of this unit, students will be proficient in leveraging these powerful tools to

manage, analyze, and visualize data effectively.

SECTION 4.1: WORKING WITH PYTHON PACKAGES

4.1.1 WORKING WITH PYTHON PACKAGES

Python packages are essential tools that significantly enhance the capabilities

of the Python programming language, especially in the fields of data analysis and

visualization. This unit focuses on three pivotal packages: NumPy, Pandas, and

Matplotlib.

NumPy is the cornerstone for numerical computing in Python, providing support

for large multi-dimensional arrays and matrices, along with a collection of

mathematical functions to operate on these arrays.

Pandas is a powerful data manipulation and analysis library that offers data

structures like Series and DataFrame, enabling efficient handling and analysis of

structured data.

4.6 Self- Assessment Questions 185

4.7 Activities / Exercises / Case Studies 186

4.8 Answers for Check your Progress 186

4.9 References and Suggested Readings 190

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

134 Periyar University – CDOE| Self-Learning Material

Matplotlib is a versatile plotting library used to create static, interactive, and

animated visualizations in Python. It provides a framework for creating a wide variety

of plots and charts, essential for data visualization.

Together, these packages form a robust foundation for performing complex

data analysis and creating insightful visualizations, making them indispensable tools

for data scientists and analysts.

4.1.2 NUMPY LIBRARY

Working with the NumPy library in Python involves understanding its core

functionalities for numerical computations, such as array operations, mathematical

functions, and linear algebra operations. Below is an overview of how to install, import,

and utilize NumPy effectively. Installing NumPy. First, you need to install NumPy if it

is not already installed. You can do this using pip install numpy

Importing NumPy: To use NumPy in your Python script, you need to import it. The

conventional alias for NumPy is np.

 import numpy as np

Basic Operations with NumPy: Creating Arrays NumPy provides various ways to

create arrays. From a Python list:

coder = np. array ([1, 2, 3, 4, 5])

print(arr)

Using built-in function s:np. zeros: Creates an array filled with zeros.np. ones: Creates

an array filled with ones.np. arange: Creates an array with a range of values.np.

Lin space: Creates an array with linearly spaced values.

zeros_array = np. zeros((3, 3))

ones_array = np.ones((2, 4))

range_array = np.arange(10)

linspace_array = np.linspace(0, 1, 5)

print(zeros_array)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

135 Periyar University – CDOE| Self-Learning Material

print(ones_array)

print(range_array)

print(linspace_array)

Array Operations NumPy allows for element-wise operations on arrays.

a = np. array ([1, 2, 3])

b = np. array([4, 5, 6])

 # Addition c = a + b

print(c) # Output: [5 7 9]

Multiplication

d = a * b

print(d) # Output: [4 10 18]

Mathematical Functions NumPy provides a wide range of mathematical

functions.

arr = np. array([1, 2, 3, 4, 5])

Square root

sqrt_arr = np.sqrt(arr)

print(sqrt_arr)

Exponential

exp_arr = np.exp(arr)

print(exp_arr)

Trigonometric functions

sin_arr = np.sin(arr)

print(sin_arr)

Array Indexing and Slicing Access elements, rows, columns, or subarrays using

indexing and slicing.

arr = np. array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Accessing an element

element = arr [1, 2]

print(element) # Output: 6

 # Slicing

subarray = arr [0:2, 1:3]

print(subarray)

Reshaping and Resizing Change the shape of an array using reshape or

resize.pythonCopy codearr = np.arange(12)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

136 Periyar University – CDOE| Self-Learning Material

Reshape

reshaped_arr = arr.reshape((3, 4))

print(reshaped_arr)

Resize

arr.resize((2, 6))

print(arr)

Linear Algebra NumPy includes various functions for linear algebra.

from numpy.linalg

import inv, eig

matrix = np. array ([[1, 2], [3, 4]])

Inverse

inverse_matrix = inv(matrix)

print(inverse_matrix)

Eigenvalues and eigenvectors

eigenvalues, eigenvectors = eig(matrix)

print(eigenvalues)

print(eigenvectors)

Broadcasting allows for operations on arrays of different shapes.

arr1 = np. array ([1, 2, 3])

arr2 = np. array ([[1], [2], [3]])

 # Broadcasting addition

result = arr1 + arr2

print(result)

NumPy is a powerful library for numerical computations in Python. It provides

functionalities such as: Array creation and manipulation. Mathematical operations.

Indexing and slicing. Linear algebra operations. Broadcasting for operations on arrays

of different shapes. By understanding and utilizing these features, you can perform

efficient numerical computations in your Python programs.

4.1.3 NDARRAY

The ndarray (n-dimensional array) is a central feature of the NumPy library in Python,

enabling efficient storage and manipulation of large datasets. Here’s a detailed guide

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

137 Periyar University – CDOE| Self-Learning Material

on working with ND array in NumPy. Creating Nd arrays From Lists You can create an

ndarray from a Python list using the np.

array () function.

 import numpy as np

1D array

arr1d = np. array([1, 2, 3, 4, 5])

print(arr1d)

2D array

arr2d = np. array([[1, 2, 3], [4, 5, 6]])

print(arr2d)

Using Built-in Functions NumPy provides several functions to create arrays with

specific patterns or values.

 # Array of zeros

zeros_array = np. zeros((2, 3))

print(zeros_array)

Array of ones

ones_array = np. ones ((2, 3))

print(ones_array)

Array with a range of values

range_array = np. arange(0, 10, 2)

print(range_array)

Array with linearly spaced values

linspace_array = np. linspace (0, 1, 5)

print(linspace_array)

Array Properties Understanding the properties of an ndarray is crucial for effective

use.

codearr = np. array ([[1, 2, 3], [4, 5, 6]])

Shape of the array

print ("Shape:", arr.shape)

Number of dimensions

print ("Number of dimensions:", arr.ndim)

Size of the array (total number of elements)

print ("Size:", arr. size)

Data type of elements

print ("Data type:", arr.dtype)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

138 Periyar University – CDOE| Self-Learning Material

4.1.4 BASIC OPERATIONS : INDEXING , SLICING AND ITERATION

INDEXING AND SLICING

Basic Indexing Access elements using square brackets.

arr = np.array([1, 2, 3, 4, 5])

Accessing a single element

print (arr [0]) # Output: 1

Accessing multiple elements

print (arr [1:4]) # Output: [2 3 4]

Multi-dimensional Indexing for multi-dimensional arrays, provide a tuple of indices.

arr = np. array ([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

Accessing an element

print (arr [1, 2]) # Output: 6

Slicing a subarray

print (arr [0:2, 1:3]) # Output: [[2 3]

[5 6]]

Array Operations Arithmetic Operations NumPy supports element-wise arithmetic

operations.

arr1 = np. array ([1, 2, 3])

arr2 = np. array ([4, 5, 6])

Addition

print (arr1 + arr2) # Output: [5 7 9]

Multiplication

print (arr1 * arr2) # Output: [4 10 18]

Scalar operations

print (arr1 * 2) # Output: [2 4 6]

Mathematical Functions Apply mathematical functions elementwise.

arr = np. array ([1, 2, 3, 4, 5])

Square root

print (np. sqrt(arr))

Exponential

print(np.exp(arr))

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

139 Periyar University – CDOE| Self-Learning Material

Trigonometric functions

print(np.sin(arr))

Reshaping Arrays Change the shape of an array without changing its data.

arr = np. arange (12)

Reshaping

reshaped_arr = arr. reshapes ((3, 4))

print(reshaped_arr)

Broadcasting allows for operations on arrays of different shapes.

 codearr1 = np. array([1, 2, 3])

arr2 = np. array ([[1], [2], [3]])

Broadcasting addition

result = arr1 + arr2

print(result)

Advanced Indexing and Boolean Array Advanced Indexing Access elements using

arrays of indices.

arr = np. array ([10, 20, 30, 40, 50])

Index array

indices = np. array ([0, 2, 4])

print(arr[indices]) # Output: [10 30 50]

Boolean Indexing Use Boolean arrays for indexing.

arr = np.array([1, 2, 3, 4, 5])

Boolean array

bool_arr = arr > 3

print(arr[bool_arr]) # Output: [4 5]

Linear Algebra Operations NumPy provides functions for linear algebra.

from numpy.linalg import inv, eig

matrix = np. array ([[1, 2], [3, 4]])

Inverse

inverse_matrix = inv(matrix)

print(inverse_matrix)

Eigenvalues and eigenvectors

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

140 Periyar University – CDOE| Self-Learning Material

eigenvalues, eigenvectors = eig(matrix)

print(eigenvalues)

print(eigenvectors)

The ndarray is a powerful feature of the NumPy library, offering a wide range of

functionalities for numerical computations:

 Creating arrays: From lists or using built-in functions.

 Array properties: Shape, dimensions, size, and data type.

 Indexing and slicing: Accessing and modifying array elements.

 Array operations: Arithmetic, mathematical functions, reshaping, and

broadcasting.

 Advanced indexing: Using arrays of indices and Boolean arrays.

 Linear algebra: Matrix operations, inverses, eigenvalues, and eigenvectors. By

mastering these features, you can leverage NumPy for efficient and effective

numerical computations in Python.

Slicing and Iteration

Slicing and Iteration in Python Slicing and iteration are fundamental techniques

in Python for accessing and manipulating sequences such as strings, lists, tuples, and

more. Below is a detailed guide on how to use slicing and iteration effectively. Slicing

Slicing allows you to extract a part of a sequence by specifying a start, stop, and step.

Basic Slicing Syntax The basic syntax for slicing is sequence [start: stop: step].start:

The starting index of the slice (inclusive).stop:

The ending index of the slice (exclusive).step:

 The step or stride between each index.

Example list

lst = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

Slicing from index 2 to 5

print(lst[2:6]) # Output: [2, 3, 4, 5]

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

141 Periyar University – CDOE| Self-Learning Material

Slicing with a step of 2

print(lst[1:8:2]) # Output: [1, 3, 5, 7]

Slicing from the beginning to index 4

print(lst[:5]) # Output: [0, 1, 2, 3, 4]

Slicing from index 5 to the end

print(lst[5:]) # Output: [5, 6, 7, 8, 9]

Slicing with negative indices

print(lst[-5:]) # Output: [5, 6, 7, 8, 9]

Reversing the list

print(lst[::-1]) # Output: [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]

Slicing String Slicing can also be applied to strings.

 codes = "Hello, World!"

Slicing from index 7 to 12

print(s[7:12]) # Output: World

Slicing with a step of 2

print(s[::2]) # Output: Hlo ol!

Reversing the string

print(s[::-1]) # Output: !dlroW ,olleH

Iteration involves going through each element of a sequence one by one. Python

provides several constructs for iteration, such as for loops and comprehensions.

Iterating Over Lists

 # Example list

lst = [0, 1, 2, 3, 4, 5]

Iterating using a for loop

for item in lst:

 print(item)

Iterating with Indexes the enumerate () function to get both the index and the value.

Example list

lst = ['a', 'b', 'c']

Iterating with index

for index, value in enumerate(lst):

 print (f"Index: {index}, Value: {value}")

Iterating Over Strings

 codes = "Hello"

Iterating through each character

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

142 Periyar University – CDOE| Self-Learning Material

for char in s:

 print(char)

Iterating Over Dictionaries Use items () to iterate over key-value pairs in a dictionary.

d = {'a': 1, 'b': 2, 'c': 3}

Iterating through dictionary items

for key, value in d. items():

 print (f"Key: {key}, Value: {value}")

List Comprehensions List comprehensions provide a concise way to create lists.

 # Creating a list of squares.

squares = [x**2 for x in range (10)]

print(squares) # Output: [0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

Filtering even numbers

evens = [x for x in range (10) if x % 2 == 0]

print(evens) # Output: [0, 2, 4, 6, 8]

Dictionary Comprehension Similar to list comprehensions, but for dictionaries.

Creating a dictionary of squares

squares_dict = {x: x**2 for x in range (10)}

print(squares_dict)

Iterating with while Loops Use while loops for more complex iterations.

i = 0

while i < 5:

 print(i)

 i += 1

Extracts parts of sequences using sequence [start: stop step]. Iteration: Traverses

elements of a sequence, often using for or while loops.

List Comprehensions:

 Create lists concisely. Dictionary Comprehensions: Create dictionaries

concisely. Enumerate: Iterate with both index and value.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

143 Periyar University – CDOE| Self-Learning Material

4.1.5 Array Manipulation

Array manipulation is a fundamental aspect of data processing and analysis in

Python, especially when using libraries like NumPy, which provides efficient and

flexible array operations. Below is a comprehensive guide to array manipulation using

NumPy. Introduction to NumPy Arrays First, ensure that NumPy is installed and

imported.

import numpy as np

Creating Arrays can be created from lists, tuples, or using NumPy’s built-in functions.

From a list

arr1 = np. array ([1, 2, 3, 4, 5])

print(arr1)

From a tuple

arr2 = np. array((1, 2, 3, 4, 5))

print(arr2)

Using built-in functions

arr3 = np. zeros ((2, 3))

print(arr3)

arr4 = np. ones ((2, 3))

print(arr4)

arr5 = np. arange (10)

print(arr5)

arr6 = np. linspace(0, 1, 5)

print(arr6)

Reshaping Arrays You can change the shape of an array using reshape.

arr = np. arange (12)

print(arr)

reshaped_arr = arr. reshape ((3, 4))

print(reshaped_arr)

Flattening Arrays Convert a multi-dimensional array into a one-dimensional array

using flatten or ravel.

arr = np. array ([[1, 2, 3], [4, 5, 6]])

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

144 Periyar University – CDOE| Self-Learning Material

flattened_arr = arr. flatten ()

print(flattened_arr)

raveled_arr = arr. ravel ()

print(raveled_arr)

Concatenating Arrays Combine arrays using concatenate, vstack, or hstack.

arr1 = np. array ([[1, 2], [3, 4]])

arr2 = np. array ([[5, 6], [7, 8]])

Concatenate along the first axis

concatenated_arr = np.concatenate((arr1, arr2), axis=0)

print(concatenated_arr)

Stack arrays vertically

vstacked_arr = np.vstack((arr1, arr2))

print(vstacked_arr)

Stack arrays horizontally

hstacked_arr = np.hstack((arr1, arr2))

print(hstacked_arr)

Splitting ArraysSplit arrays into multiple sub-arrays using split, hsplit, or vsplit.

arr = np.arange(16).reshape((4, 4))

Split array into 2 sub-arrays along the first axis

split_arr = np.split(arr, 2, axis=0)

print(split_arr)

Split array into 2 sub-arrays along the second axis

hsplit_arr = np.hsplit(arr, 2)

print(hsplit_arr)

Split array into 2 sub-arrays along the first axis

vsplit_arr = np.vsplit(arr, 2)

print(vsplit_arr)

Adding and Removing Elements. Use append, insert, and delete to modify arrays.

arr = np.array([1, 2, 3, 4, 5])

Append element to array

appended_arr = np.append(arr, 6)

print(appended_arr)

Insert element at specific position

inserted_arr = np.insert(arr, 2, 10)

print(inserted_arr)

Delete element at specific position

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

145 Periyar University – CDOE| Self-Learning Material

deleted_arr = np.delete(arr, 2)

print(deleted_arr)

Array TranspositionTranspose arrays using transpose or T.

arr = np.array([[1, 2, 3], [4, 5, 6]])

Transpose the array

transposed_arr = arr.transpose()

print(transposed_arr)

Alternative way

print(arr.T)

Element-wise Operations : Perform element-wise operations such as addition,

subtraction, multiplication, and division.

arr1 = np.array([1, 2, 3])

arr2 = np.array([4, 5, 6])

Element-wise addition

print(arr1 + arr2) # Output: [5 7 9]

Element-wise subtraction

print(arr1 - arr2) # Output: [-3 -3 -3]

Element-wise multiplication

print(arr1 * arr2) # Output: [4 10 18]

Element-wise division

print(arr1 / arr2) # Output: [0.25 0.4 0.5]

BroadcastingBroadcasting allows operations on arrays of different

shapes.

arr1 = np.array([1, 2, 3])

arr2 = np.array([[1], [2], [3]])

Broadcasting addition

result = arr1 + arr2

print(result)

Universal Functions (ufuncs)NumPy provides many universal functions for element-

wise operations.

arr = np.array([1, 2, 3, 4])

Square root

print(np.sqrt(arr))

Exponential

print(np.exp(arr))

Sine

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

146 Periyar University – CDOE| Self-Learning Material

print(np.sin(arr))

NumPy provides powerful tools for array manipulation, including: Creating

arrays: From lists, tuples, and using built-in functions. Reshaping and flattening arrays.

Concatenating and splitting arrays. Adding, inserting, and deleting elements.

Transposing arrays. Performing element-wise operations. Broadcasting: Enabling

operations on arrays of different shapes. Using universal functions: For mathematical

operations. These capabilities make NumPy an essential library for numerical

computations and data manipulation in Python.

Let Us Sum Up

In Python, working with packages like NumPy facilitates efficient numerical

computations. NumPy provides the ndarray object, a powerful multidimensional array

structure that supports a variety of mathematical operations. Basic operations with

ndarray include indexing, which allows access to individual elements, slicing to

extract subarrays, and iteration over array elements. NumPy also offers

comprehensive array manipulation functions, such as reshaping, concatenating, and

broadcasting, making it ideal for complex data processing and mathematical tasks.

This combination of functionalities makes NumPy an essential tool for scientific

computing and data analysis in Python.

Check Your Progress

1. What does np.ndarray represent in NumPy?
A) List object
B) DataFrame
C) n-dimensional array
D) Dictionary

2. How do you create a 1D NumPy array?
A) np.array([1, 2, 3, 4])
B) np.zeros((4,))
C) np.empty(4)
D) np.linspace(4)

3.What function returns a NumPy array filled with zeros?
A) np.ones(shape)

 B) np.empty(shape)
C) np.zeros(shape)
D) np.full(shape, 0)

4.How do you access the third element of a NumPy array arr?
A) arr[3]

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

147 Periyar University – CDOE| Self-Learning Material

B) arr[2]
C) arr(3)
D) arr[1]

5.What method is used to reshape a NumPy array?
A) reform()
B) resize()
C) reshape()
D) transform()

6.How do you slice the first three elements of a NumPy array arr?
A) arr[3:]
B) arr[:3]
C) arr[1:4]
D) arr[0:3]

7.Which function creates an array with a specified range of numbers?
A) np.linspace(start, stop, num)
B) np.arange(start, stop, step)
C) np.random.random(size)
D) np.full(size, fill_value)

8. What is the output of np.eye(3)?
A) A 3x3 matrix of zeros
B) A 3x3 identity matrix
C) A 3x3 matrix of ones
D) A 3x3 random matrix

9.How can you concatenate two NumPy arrays a and b horizontally?
A) np.vstack((a, b))
B) np.concatenate((a, b))
C) np.hstack((a, b))
D) np.split((a, b))

10.What function computes the mean of a NumPy array?
A) np.median(arr)
B) np.mean(arr)
C) np.average(arr)
D) np.sum(arr)

SECTION 4.2: PANDAS

Pandas is a powerful and flexible open-source data manipulation and analysis

library for Python. It provides data structures like Data Frame and Series, which are

designed to handle structured data intuitively and efficiently. Here’s a comprehensive

guide to using Pandas for data manipulation and analysis. Introduction to Pandas First,

ensure you have Pandas installed and imported.

!pip install pandas

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

148 Periyar University – CDOE| Self-Learning Material

import pandas as pd

Data Structures in Pandas Series A Series is a one-dimensional array-like object that

can hold any data type.

Creating a Series from a list

data = [1, 2, 3, 4, 5]

series = pd.Series(data)

print(series)

Creating a Series with a custom index

series = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])

print(series)

DataFrame: A DataFrame is a two-dimensional, size-mutable, and potentially

heterogeneous tabular data structure.

Creating a DataFrame from a dictionary

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, 30, 35],

 'City': ['New York', 'Los Angeles', 'Chicago']

}

df = pd.DataFrame(data)

print(df)

Creating a DataFrame from a list of lists

data = [

 ['Alice', 25, 'New York'],

 ['Bob', 30, 'Los Angeles'],

 ['Charlie', 35, 'Chicago']

]

df = pd.DataFrame(data, columns=['Name', 'Age', 'City'])

print(df)

Reading and Writing DataReading DataPandas can read data from various file

formats.

Reading a CSV file

df = pd.read_csv('file.csv')

Reading an Excel file

df = pd.read_excel('file.xlsx')

Reading a JSON file

df = pd.read_json('file.json')

Reading from a SQL database

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

149 Periyar University – CDOE| Self-Learning Material

import sqlite3

conn = sqlite3.connect('database.db')

df = pd.read_sql('SELECT * FROM table', conn)

Writing DataPandas can also write data to various file formats.

Writing to a CSV file

df.to_csv('file.csv', index=False)

Writing to an Excel file

df.to_excel('file.xlsx', index=False)

Writing to a JSON file

df.to_json('file.json', orient='records')

Writing to a SQL database

df.to_sql('table', conn, if_exists='replace', index=False)

Basic Data Operations Viewing Data

Viewing the first few rows

print(df.head())

Viewing the last few rows

print(df.tail())

Getting information about the DataFrame

print(df.info())

Getting basic statistics

print(df.describe())

Selecting Data

Selecting a single column

print(df['Name'])

Selecting multiple columns

print(df[['Name', 'Age']])

Selecting rows by index

print(df.iloc[0]) # First row

print(df.iloc[0:2]) # First two rows

Selecting rows by label

print(df.loc[0]) # First row

print(df.loc[0:2]) # First three rows

Conditional selection

print(df[df['Age'] > 30])

Modifying DataAdding and Modifying Columns

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

150 Periyar University – CDOE| Self-Learning Material

Adding a new column

df['Country'] = ['USA', 'USA', 'USA']

print(df)

Modifying an existing column

df['Age'] = df['Age'] + 1

print(df)

Dropping Columns and Rows

Dropping a column

df = df.drop('Country', axis=1)

print(df)

Dropping a row

df = df.drop(0, axis=0)

print(df)

Handling Missing Data

Checking for missing values

print(df.isnull())

Dropping rows with missing values

df = df.dropna()

print(df)

Filling missing values

df = df.fillna(0)

print(df)

Grouping and Aggregating Data

Grouping data by a column

grouped = df.groupby('City')

print(grouped.mean())

Aggregating data with multiple functions

agg = grouped.agg({'Age': ['mean', 'max'], 'Name': 'count'})

print(agg)

Merging and Joining DataPandas provides several functions for

combining DataFrames.

Merging DataFrames

df1 = pd.DataFrame({'key': ['A', 'B', 'C'], 'value1': [1, 2, 3]})

df2 = pd.DataFrame({'key': ['A', 'B', 'D'], 'value2': [4, 5, 6]})

merged = pd.merge(df1, df2, on='key', how='inner')

print(merged)

Concatenating DataFrames

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

151 Periyar University – CDOE| Self-Learning Material

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']})

df2 = pd.DataFrame({'A': ['A3', 'A4', 'A5'], 'B': ['B3', 'B4', 'B5']})

concatenated = pd.concat([df1, df2])

print(concatenated)

Working with Time Series DataPandas has robust support for working with time series

data.

Creating a time series

dates = pd.date_range('20230101', periods=6)

df = pd.DataFrame(np.random.randn(6, 4), index=dates,

columns=list('ABCD'))

print(df)

Resampling time series data

resampled = df.resample('M').mean()

print(resampled)

Advanced Indexing MultiIndex Pandas supports hierarchical indexing for working with

high-dimensional data.

Creating a MultiIndex DataFrame

arrays = [

 ['bar', 'bar', 'baz', 'baz', 'foo', 'foo', 'qux', 'qux'],

 ['one', 'two', 'one', 'two', 'one', 'two', 'one', 'two']]

index = pd.MultiIndex.from_arrays(arrays, names=('first', 'second'))

df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A',

'B'])

print(df)

Accessing data in a MultiIndex DataFrame

print(df.loc['bar'])

print(df.loc[('bar', 'one')]

Pandas is an essential tool for data manipulation and analysis in Python,

providing powerful data structures and a wealth of functionalities for: Creating and

manipulating Series and Data Frames. Reading from and writing to various file

formats. Performing basic and advanced data operations. Handling missing data.

Grouping, aggregating, merging, and joining data. Working with time series data.

Advanced indexing techniques. By mastering Pandas, you can efficiently manage and

analyze large datasets, making it an indispensable library for data science and

analytics.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

152 Periyar University – CDOE| Self-Learning Material

4.2.1– THE SERIES – THE DATAFRAME

Pandas Series and Data Frame Pandas provides two primary data structures

for data manipulation: Series and Data Frame. Understanding these structures is

fundamental to working effectively with Pandas. The Series A Series is a one-

dimensional array-like object capable of holding any data type (integers, strings,

floating-point numbers, Python objects, etc.). It is similar to a column in a Data Frame

or a one-dimensional array in NumPy. Creating a Series You can create a Series from

a list, dictionary, or scalar value.

import pandas as pd

From a list

data = [1, 2, 3, 4, 5]

series = pd.Series(data)

print(series)

From a list with a custom index

series = pd.Series(data, index=['a', 'b', 'c', 'd', 'e'])

print(series)

From a dictionary

data = {'a': 1, 'b': 2, 'c': 3}

series = pd. Series(data)

print(series)

From a scalar value

series = pd.Series(5, index=['a', 'b', 'c'])

print(series)

Accessing Data in a Series You can access data in a Series using the index.

series = pd.Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e'])

Accessing by label

print(series['a']) # Output: 1

Accessing by position

print(series[0]) # Output: 1

Accessing multiple elements

print(series[['a', 'c', 'e']]) # Output: [1, 3, 5]

Slicing

print(series['b':'d']) # Output: b 2, c 3, d 4

Vectorized Operations Series support vectorized operations, making element-wise

operations easy.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

153 Periyar University – CDOE| Self-Learning Material

series = pd.Series([1, 2, 3, 4, 5])

Adding a scalar

print (series + 1) # Output: [2, 3, 4, 5, 6]

Element-wise addition

print(series + series) # Output: [2, 4, 6, 8, 10]

Applying functions

print (series.apply(lambda x: x**2)) # Output: [1, 4, 9, 16, 25]

The Data Frame A DataFrame is a two-dimensional, size-mutable, and potentially

heterogeneous tabular data structure with labeled axes (rows and columns). It is

similar to a spreadsheet or SQL table, or a dictionary of Series objects. Creating a

DataFrameYou can create a DataFrame from dictionaries, lists, or other DataFrames.

From a dictionary

data = {

 'Name': ['Alice', 'Bob', 'Charlie'],

 'Age': [25, 30, 35],

 'City': ['New York', 'Los Angeles', 'Chicago']

}

df = pd.DataFrame(data)

print(df)

From a list of dictionaries

data = [

 {'Name': 'Alice', 'Age': 25, 'City': 'New York'},

 {'Name': 'Bob', 'Age': 30, 'City': 'Los Angeles'},

 {'Name': 'Charlie', 'Age': 35, 'City': 'Chicago'}

]

df = pd.DataFrame(data)

print(df)

From a list of lists

data = [

 ['Alice', 25, 'New York'],

 ['Bob', 30, 'Los Angeles'],

 ['Charlie', 35, 'Chicago']

]

df = pd.DataFrame(data, columns=['Name', 'Age', 'City'])

print(df)

Accessing Data in a DataFrameYou can access data in a DataFrame using labels

and positions.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

154 Periyar University – CDOE| Self-Learning Material

Accessing columns

print(df['Name']) # Output: Series of names

Accessing multiple columns

print(df[['Name', 'Age']]) # Output: DataFrame with Name and Age c

 columns

Accessing rows by index

print(df.iloc[0]) # Output: First row

Accessing rows by label

df.index = ['row1', 'row2', 'row3']

print(df.loc['row1']) # Output: First row

Accessing a specific value

print(df.at['row1', 'Name']) # Output: Alice

print(df.iat[0, 0]) # Output: Alice

Modifying Data You can modify the DataFrame by adding or removing columns and

rows.

Adding a new column

df['Country'] = ['USA', 'USA', 'USA']

print(df)

Modifying an existing column

df['Age'] = df['Age'] + 1

print(df)

Dropping a column

df = df.drop('Country', axis=1)

print(df)

Dropping a row

df = df.drop('row1', axis=0)

print(df)

Operations on DataFramesDataFrames support a wide range of operations, including

aggregation, filtering, and more.Aggregation

Aggregation functions

print(df.sum())

print(df.mean())

print(df.describe())

Grouping and aggregation

grouped = df.groupby('City')

print(grouped.mean())

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

155 Periyar University – CDOE| Self-Learning Material

Filtering

Filtering rows

filtered_df = df[df['Age'] > 30]

print(filtered_df)

Merging and Joining

Merging DataFrames

df1 = pd.DataFrame({'key': ['A', 'B', 'C'], 'value1': [1, 2, 3]})

df2 = pd.DataFrame({'key': ['A', 'B', 'D'], 'value2': [4, 5, 6]})

merged_df = pd.merge(df1, df2, on='key', how='inner')

print(merged_df)

Concatenating DataFrames

df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2'], 'B': ['B0', 'B1', 'B2']})

df2 = pd.DataFrame({'A': ['A3', 'A4', 'A5'], 'B': ['B3', 'B4', 'B5']})

concatenated_df = pd.concat([df1, df2])

print(concatenated)

Time Series Data Pandas has robust support for handling time series data.

Creating a time series DataFrame

dates = pd.date_range('2023-01-01', periods=6)

df = pd.DataFrame(np.random.randn(6, 4), index=dates,

columns=list('ABCD'))

print(df)

Resampling time series data

resampled_df = df.resample('M').mean()

print(resampled_df)

Pandas Series and Data Frames are powerful tools for data manipulation and analysis.

Series: One-dimensional array-like structure with labelled indices.

DataFrame: Two-dimensional, mutable, and heterogeneous tabular structure.

Data Operations: Creating, accessing, modifying, aggregating, filtering, merging, and

joining data.

Time Series: Handling and analyzing time-based data. Mastering these data structures

and their operations will enable you to efficiently manipulate and analyze complex

datasets in Python.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

156 Periyar University – CDOE| Self-Learning Material

4.2.3– THE INDEX OBJECTS

The Index Objects in Pandas

In Pandas, the `Index` object is an essential part of both `Series` and

`DataFrame`. It acts as the label for the rows and columns and provides the axis labels

for the data structures.

Types of Index Objects

1. Range Index: A default index, like Python’s built-in `range`.

2. Index: A generic, immutable sequence used for indexing and alignment.

3. MultiIndex: A hierarchical index for multi-dimensional data.

4. Datetime Index: An index of timestamp values.

Creating and Using Index Objects

import pandas as pd

#Creating a Series with a custom Index

data = [1, 2, 3, 4, 5]

index = pd.Index(['a', 'b', 'c', 'd', 'e'])

series = pd.Series(data, index=index)

print(series)

#Range Index

Creating a DataFrame with default Range Index

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6]})

print(df.index) # Output: Range Index(start=0, stop=3, step=1)

MultiIndex

Creating a MultiIndex

arrays = [

 ['bar', 'bar', 'baz', 'baz', 'foo', 'foo'],

 ['one', 'two', 'one', 'two', 'one', 'two']

]

multi_index = pd.MultiIndex.from_arrays(arrays, names=('first',

'second'))

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

157 Periyar University – CDOE| Self-Learning Material

Creating a Data Frame with MultiIndex

df = pd.DataFrame({'A': [1, 2, 3, 4, 5, 6]}, index=multi_index)

print(df)

DatetimeIndex

Creating a DatetimeIndex

dates = pd.date_range('2023-01-01', periods=6)

df = pd.DataFrame({'A': [1, 2, 3, 4, 5, 6]}, index=dates)

print(df.index) # Output: DatetimeIndex

print(df)

Index Object Methods and Properties

Basic Properties

#Creating an Index object

index = pd.Index(['a', 'b', 'c', 'd', 'e'])

#Accessing properties

print(index.size) # Output: 5

print(index.shape) # Output: (5,)

print(index.ndim) # Output: 1

print(index.dtype) # Output: object

Indexing and Slicing

Indexing and slicing Index objects

print(index[1]) # Output: b

print(index[1:3]) # Output: Index(['b', 'c'], dtype='object')

Operations on Index

Creating another Index object

index2 = pd.Index(['c', 'd', 'e', 'f', 'g'])

Intersection

print(index. intersection(index2)) # Output: Index(['c', 'd', 'e'],

dtype='object')

 Union

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

158 Periyar University – CDOE| Self-Learning Material

print(index.Union(index2)) # Output: Index(['a', 'b', 'c', 'd', 'e', 'f', 'g'],

dtype='object')

 Difference

print(index.difference(index2)) # Output: Index(['a', 'b'], dtype='object')

Working with MultiIndex

Creating and Accessing MultiIndex

Creating a MultiIndex from tuples

tuples = [('bar', 'one'), ('bar', 'two'), ('baz', 'one'), ('baz', 'two')]

multi_index = pd.MultiIndex.from_tuples(tuples, names=['first',

'second'])

Creating a DataFrame with MultiIndex

df = pd.DataFrame({'A': [1, 2, 3, 4]}, index=multi_index)

print(df)

Accessing data in a MultiIndex DataFrame

print(df.loc['bar']) # Accessing all 'bar' entries

print(df.loc[('bar', 'one')]) # Accessing a specific entry

Multi Index Methods

Creating a MultiIndex

arrays = [

 ['bar', 'bar', 'baz', 'baz', 'foo', 'foo'],

 ['one', 'two', 'one', 'two', 'one', 'two']

]

multi_index = pd.MultiIndex.from_arrays(arrays, names=('first',

'second'))

Getting levels and labels

print(multi_index.levels) # Output: Levels of the MultiIndex

print(multi_index.labels) # Deprecated, use multi_index.codes instead

print(multi_index.codes) # Output: Codes of the MultiIndex

Handling Index and Columns in Data Frame

Setting and Resetting Index

#Setting a new index

df = pd.DataFrame({'A': ['foo', 'bar', 'baz'], 'B': [1, 2, 3]})

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

159 Periyar University – CDOE| Self-Learning Material

df = df.set_index('A')

print(df)

Resetting the index

df = df.reset_index()

print(df)

Renaming index and columns

df = pd.DataFrame({'A': [1, 2, 3]}, index=['a', 'b', 'c'])

df = df.rename(index={'a': 'x', 'b': 'y'}, columns={'A': 'Value'})

print(df)

Index objects in Pandas are a powerful feature for handling and manipulating data.

Key points include:

1. Types of Indexes: `Range Index`, `Index`, `MultiIndex`, `DatetimeIndex`.

2. Creation and Access: You can create and access different types of Indexes

using various methods.

3. Operations: Index objects support set operations like intersection, union, and

difference.

4. MultiIndex: Allows for multi-dimensional data and provides methods for

hierarchical indexing.

5. Index Manipulation: Setting, resetting, and renaming indexes and columns

enhance data management.

Let Us Sum Up

In this unit, we explored the essential Python packages for data manipulation

and analysis, primarily focusing on NumPy and Pandas. We delved into NumPy's

ndarray, learning about its creation, basic operations, and advanced indexing

techniques. We also covered array manipulation methods to reshape and merge

arrays efficiently. Moving on to Pandas, we examined its core data structures: Series

and DataFrame, along with their indexing and slicing operations. We learned how to

perform various data manipulation tasks using these structures, including handling

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

160 Periyar University – CDOE| Self-Learning Material

missing data, grouping, and sorting. Finally, we discussed the Index object in Pandas

and its role in enhancing data alignment and indexing.

Check Your Progress

1. What is the primary purpose of NumPy in Python?

A) Web development

B) Numerical and scientific computing

C) Machine learning algorithms

D) Text processing

2. Which object in NumPy is used to represent multi-dimensional arrays?

A) list

B) dict

C) ndarray

D) set

3. How do you create a NumPy array from a list [1, 2, 3]?

A) np.array([1, 2, 3])

B) np.create([1, 2, 3])

C) np.ndarray([1, 2, 3])

D) np.make([1, 2, 3])

4. Which function is used to perform element-wise addition of two NumPy

arrays?

A) np.add()

B) np.sum()

C) np.plus()

D) np.concatenate()

5. What does the shape attribute of a NumPy array return?

A) The size of each element in bytes

B) The total number of elements

C) The dimensions of the array

D) The data type of the elements

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

161 Periyar University – CDOE| Self-Learning Material

6. How do you access the element at the second row and third column in a 2D

NumPy array arr?

A) arr[1, 2]

B) arr[2, 3]

C) arr[3, 2]

D) arr[2, 1]

7. Which operation is used to combine multiple arrays along a specified axis in

NumPy?

A) np.concatenate()

B) np.append()

C) np.insert()

D) np.expand()

8. What does the ndim attribute of a NumPy array indicate?

A) Number of elements

B) Data type of elements

C) Number of dimensions

D) Memory size of the array

9. How do you reshape a NumPy array arr of size 9 into a 3x3 matrix?

A) arr.reshape(3, 3)

B) arr.resize(3, 3)

C) np.reshape(arr, 3, 3)

D) arr.shape(3, 3)

10. Which function is used to find the maximum value in a NumPy array?

A) np.max()

B) np.maximum()

C) np.argmax()

D) np.maxvalue()

11. What is the primary data structure used in the Pandas library for 1-

dimensional labeled data?

A) DataFrame

B) Series

C) ndarray

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

162 Periyar University – CDOE| Self-Learning Material

D) Index

12. How do you create a Pandas DataFrame from a dictionary?

A) pd.DataFrame.from_dict()

B) pd.DataFrame(dict)

C) pd.createDataFrame(dict)

D) pd.DataFrame(dict)

13. Which method would you use to read a CSV file into a Pandas DataFrame?

A) pd.read_csv()

B) pd.load_csv()

C) pd.import_csv()

D) pd.load_csvfile()

14. How do you select the column 'age' from a Pandas DataFrame df?

A) df.age

B) df['age']

C) df[['age']]

D) All of the above

15. Which attribute of a Pandas DataFrame returns the column labels?

A) df.columns

B) df.index

C) df.labels

D) df.names

16. How do you add a new column 'total' to a DataFrame df by summing two

existing columns 'A' and 'B'?

A) df['total'] = df['A'] + df['B']

B) df.add_column('total', df['A'] + df['B'])

C) df.new_column('total', df['A'] + df['B'])

D) df['total'] = df.sum(['A', 'B'])

17. What does the iloc function in Pandas do?

A) Selects data by label

B) Selects data by integer-location based indexing

C) Inserts a column

D) Loads data from a file

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

163 Periyar University – CDOE| Self-Learning Material

18. Which method would you use to handle missing data by filling with the mean

value in a Pandas DataFrame?

A) df.fillna(df.mean())

B) df.replaceNaN(df.mean())

C) df.interpolate(df.mean())

D) df.fill_mean(df.mean())

19. How do you group data by a column 'group' in a Pandas DataFrame df?

A) df.groupby('group')

B) df.group_by('group')

C) df.group('group')

D) df.groupby_column('group')

20. Which method would you use to sort a DataFrame df by the values in column

'A'?

A) df.sort_values('A')

B) df.sort_by('A')

C) df.sort_column('A')

D) df.sort_by_column('A')

21. What is the primary purpose of the Index object in Pandas?

A) To store data

B) To label and align data

C) To perform calculations

D) To visualize data

22. How do you convert a Pandas DataFrame df to a NumPy array?

A) df.to_numpy()

B) df.to_ndarray()

C) df.as_matrix()

D) df.to_array()

23. What is the use of the head() method in Pandas?

A) To get the first few rows of a DataFrame

B) To get the last few rows of a DataFrame

C) To get the column names

D) To get the index names

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

164 Periyar University – CDOE| Self-Learning Material

24. Which Pandas function is used to concatenate DataFrames vertically?

A) pd.concat()

B) pd.append()

C) pd.merge()

D) pd.join()

25. What does the describe() method do in Pandas?

A) Provides a summary of statistics for numerical columns

B) Describes the data types of columns

C) Provides a summary of text data

D) Displays the column names

26. How do you rename the columns of a DataFrame df?

A) df.rename(columns=new_names)

B) df.rename_columns(new_names)

C) df.columns.rename(new_names)

D) df.set_columns(new_names)

27. What does the transpose() method do in a Pandas DataFrame?

A) Swaps rows and columns

B) Rotates the DataFrame 90 degrees

C) Inverts the DataFrame

D) Reverses the DataFrame

28. Which method in Pandas is used to merge two DataFrames based on a key?

A) pd.merge()

B) pd.concat()

C) pd.join()

D) pd.bind()

29. What is the use of the pivot_table() method in Pandas?

A) To create a spreadsheet-style pivot table

B) To plot data

C) To transform data

D) To filter data

30. How do you reset the index of a DataFrame df?

A) df.reset_index()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

165 Periyar University – CDOE| Self-Learning Material

B) df.set_index()

C) df.reset()

D) df.clear_index()

SECTION 4.3 DATA VISALIZATION WITH MATPLOTLIB

Matplotlib is a powerful and versatile plotting library for Python that enables you

to create a wide variety of static, animated, and interactive visualizations. Here's a

comprehensive guide to getting started with Matplotlib and using it to create various

types of plots. Installation and Import First, ensure you have Matplotlib

installed:shCopy codepip install matplotlib.

Then, import the necessary modules:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

Basic Plotting Line Plot A simple line plot can be created using plt.plot.

Creating data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Plotting the data

plt.plot(x, y)

Adding titles and labels

plt.title("Sine Wave")

plt.xlabel("x")

plt.ylabel("sin(x)")

Displaying the plot

plt.show()

Customizing Plots Adding Legends and Grid

plt.plot(x, y, label='sin(x)')

plt.plot(x, np.cos(x), label='cos(x)')

plt.legend()

plt.grid(True)

plt.title("Sine and Cosine Waves")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

166 Periyar University – CDOE| Self-Learning Material

plt.xlabel("x")

plt.ylabel("Value")

plt.show()

Customizing Lines and Markers

plt.plot(x, y, color='blue', linestyle='--', linewidth=2, marker='o',

markersize=5, label='sin(x)')

plt.legend()

plt.title("Customized Sine Wave")

plt.show()

Subplots allow you to create multiple plots in a single figure.

Creating a 2x1 subplot

fig, axs = plt.subplots(2, 1, figsize=(10, 8))

Plotting on the first subplot

axs[0].plot(x, y, 'r')

axs[0].set_title('Sine Wave')

Plotting on the second subplot

axs[1].plot(x, np.cos(x), 'b')

axs[1].set_title('Cosine Wave')

Adding overall titles and labels

plt.suptitle("Sine and Cosine Waves")

plt.xlabel("x")

plt.ylabel("Value")

plt.show()

Different Types of Plots Scatter Plot

Creating random data

x = np.random.rand(50)

y = np.random.rand(50)

colors = np.random.rand(50)

sizes = 1000 * np.random.rand(50)

Creating a scatter plot

plt.scatter(x, y, c=colors, s=sizes, alpha=0.5, cmap='viridis')

plt.colorbar()

plt.title("Scatter Plot")

plt.show()

Bar Plot

Creating data

categories = ['A', 'B', 'C', 'D']

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

167 Periyar University – CDOE| Self-Learning Material

values = [5, 7, 8, 6]

Creating a bar plot

plt.bar(categories, values, color='purple')

plt.title("Bar Plot")

plt.xlabel("Categories")

plt.ylabel("Values")

plt.show()

Histogram

Creating random data

data = np.random.randn(1000)

Creating a histogram

plt.hist(data, bins=30, color='green', alpha=0.7)

plt.title("Histogram")

plt.xlabel("Value")

plt.ylabel("Frequency")

plt.show()

Box Plot

Creating random data

data = [np.random.rand(50), np.random.rand(50), np.random.rand(50)]

Creating a box plot

plt.boxplot(data)

plt.title("Box Plot")

plt.xlabel("Category")

plt.ylabel("Value")

plt.show()

Pie Chart

Creating data

labels = ['A', 'B', 'C', 'D']

sizes = [15, 30, 45, 10]

colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']

explode = (0.1, 0, 0, 0) # Explode the first slice

Creating a pie chart

plt.pie(sizes, explode=explode, labels=labels, colors=colors,

autopct='%1.1f%%', shadow=True, startangle=140)

plt.title("Pie Chart")

plt.show()

Advanced Plot Customizations& Adding Annotations

Creating data

x = np.linspace(0, 10, 100)

y = np.sin(x)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

168 Periyar University – CDOE| Self-Learning Material

Plotting the data

plt.plot(x, y)

Adding an annotation

plt.annotate('Max Point', xy=(np.pi/2, 1), xytext=(np.pi/2 + 1, 1.5),

 arrowprops=dict(facecolor='black', shrink=0.05))

plt.title("Sine Wave with Annotation")

plt.xlabel("x")

plt.ylabel("sin(x)")

plt.show()

Using Logarithmic Scale

Creating data

x = np.linspace(0.1, 10, 100)

y = np.exp(x)

Plotting with logarithmic scale

plt.plot(x, y)

plt.yscale('log')

plt.title("Exponential Growth (Log Scale)")

plt.xlabel("x")

plt.ylabel("exp(x)")

plt.show()

Saving PlotsYou can save plots in various formats such as PNG, PDF, SVG, and

more.

Creating data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Plotting the data

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("x")

plt.ylabel("sin(x)")

Saving the plot

plt.savefig("sine_wave.png")

plt.savefig("sine_wave.pdf")

plt.show()

Interactive Plots with WidgetsUsing the ipympl backend and Jupyter widgets, you

can create interactive plots.

Install ipympl

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

169 Periyar University – CDOE| Self-Learning Material

!pip install ipympl

Enable the backend

%matplotlib widget

Creating an interactive plot

plt.figure()

plt.plot(x, y)

plt.title("Interactive Sine Wave")

plt.xlabel("x")

plt.ylabel("sin(x)")

plt.show()

Matplotlib provides a comprehensive toolkit for creating a wide range of static,

animated, and interactive plots. By mastering the basics and exploring its advanced

features, you can create visually appealing and informative data visualizations. Here’s

a quick recap of what we covered: Basic Plotting: Line plots, legends, grid.

Customization: Line styles, markers, subplots. Various Plot Types: Scatter, bar,

histogram, box, pie charts. Advanced Customizations: Annotations, logarithmic scale.

Saving Plots: Exporting plots to different file formats. Interactive Plots: Using Jupyter

widgets for interactivity.

4.3.1 THE MATPLOTLIB ARCHITECTURE : PYPLOT

Matplotlib, a comprehensive library for creating static, animated, and interactive

visualizations in Python, is built on a layered architecture. Understanding this

architecture helps in efficiently using Matplotlib for diverse plotting needs. The key

component most users interact with is pyplot, which provides a high-level interface to

the underlying architecture. Overview of Matplotlib Architecture Pyplot Interface

(matplotlib.pyplot): A collection of functions that make Matplotlib work like MATLAB,

designed to make creating common plots as simple as possible.Figure and Axes: Core

objects in the Matplotlib object hierarchy, representing the entire figure and individual

plots within a figure, respectively. Backend Layer: Handles all the drawing/rendering

tasks. Includes several backends for different outputs (e.g., PNG, PDF, interactive

interfaces).Artists: All visual elements in a plot (e.g., lines, text, markers).The Pyplot

Interface pyplot is a state-based interface to Matplotlib. It keeps track of the current

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

170 Periyar University – CDOE| Self-Learning Material

figure and axes, making it easy to create and manage plots. Basic Structure Here's a

simple example using pyplot:

import matplotlib.pyplot as plt

import numpy as np

Creating data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Creating a plot

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("x")

plt.ylabel("sin(x)")

Displaying the plot

plt.show()

Core ComponentsFigure: The entire figure, a container holding all plot elements. It's

the top-level container.Axes: Represents a single plot. A figure can contain multiple

axes (plots).Axis: Represents the x and y-axis.

Creating a figure and axes

fig, ax = plt.subplots()

Plotting on the axes

ax.plot(x, y)

ax.set_title("Sine Wave")

ax.set_xlabel("x")

ax.set_ylabel("sin(x)")

Displaying the plot

plt.show()

Creating and Customizing Plots with PyplotCreating Multiple SubplotsYou can create

multiple subplots within a single figure using plt.subplots.

Creating multiple subplots

fig, axs = plt.subplots(2, 2)

Plotting on each subplot

axs[0, 0].plot(x, y)

axs[0, 0].set_title('Sine')

axs[0, 1].plot(x, np.cos(x), 'r')

axs[0, 1].set_title('Cosine')

axs[1, 0].plot(x, np.tan(x), 'g')

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

171 Periyar University – CDOE| Self-Learning Material

axs[1, 0].set_title('Tangent')

axs[1, 1].plot(x, -y, 'k')

axs[1, 1].set_title('Negative Sine')

Adjusting layout

plt.tight_layout()

plt.show()

Customizing Plots You can customize plots using various pyplot functions.

Creating a plot with customized lines and markers

plt.plot(x, y, label='Sine', color='blue', linestyle='--', marker='o',

markersize=5)

Adding labels and title

plt.xlabel("x")

plt.ylabel("sin(x)")

plt.title("Customized Sine Wave")

plt.legend()

Adding grid

plt.grid(True)

Displaying the plot

plt.show()

Advanced Plot Customizations Using Artists for Fine ControlArtists are the objects

that represent everything you see on a plot (lines, text, etc.).

Creating a figure and axes

fig, ax = plt.subplots()

Creating a line artist

line, = ax.plot(x, y, label='Sine', color='blue')

Customizing the line artist

line.set_linestyle('--')

line.set_marker('o')

Adding text

ax.text(5, 0, "Center", fontsize=12, ha='center')

Displaying the plot

plt.legend()

plt.show()

Handling Multiple Figures and Axes You can create and manage multiple figures and

axes.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

172 Periyar University – CDOE| Self-Learning Material

Creating multiple figures

fig1, ax1 = plt.subplots()

fig2, ax2 = plt.subplots()

Plotting on the first figure

ax1.plot(x, y)

ax1.set_title('Figure 1: Sine')

Plotting on the second figure

ax2.plot(x, np.cos(x), 'r')

ax2.set_title('Figure 2: Cosine')

Displaying both figures

plt.show()

Understanding the Backend LayerMatplotlib can render plots using different

backends, which can be categorized into:Interactive Backends: For use with GUI

interfaces (e.g., Qt5Agg, TkAgg).Non-Interactive Backends: For generating files (e.g.,

Agg for PNG, PDF for PDF files).You can switch backends using matplotlib.use.

import matplotlib

Switching to the 'Agg' backend for file output

matplotlib.use('Agg')

import matplotlib.pyplot as plt

Creating a plot

plt.plot(x, y)

plt.savefig("sine_wave.png")

Interactive PlotsMatplotlib integrates with interactive environments like Jupyter

notebooks.

Enabling interactive mode in Jupyter

%matplotlib notebook

Creating an interactive plot

plt.plot(x, y)

plt.title("Interactive Sine Wave")

plt.show()

The Matplotlib architecture, particularly the pyplot interface, provides a powerful and

flexible framework for creating a wide variety of plots in Python. Key components

include:

1. Figure and Axes: Fundamental objects for creating plots.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

173 Periyar University – CDOE| Self-Learning Material

2. Pyplot Interface: Simplifies creating common plots with state-based functions.

3. Customization: Extensive options for customizing plots, including lines,

markers, and text.

4. Artists: Fine control over plot elements.

5. Backend Layer: Manages rendering and output, supporting various formats and

interactive environments.

By understanding and utilizing these components, you can create sophisticated and

customized visualizations to effectively communicate your data insights.

4.3.2– THE PLOTTING WINDOW: ADDING ELEMENT TO THE CHART WITH

MATPLOTLIB

Adding various elements to a chart in Matplotlib can significantly enhance the

clarity and informativeness of your visualizations. Here’s a detailed guide on how to

add and customize these elements, such as titles, labels, legends, grids, annotations,

and more. Basic PlotLet's start with a simple plot to demonstrate the addition of various

elements.

import matplotlib.pyplot as plt

import numpy as np

Creating data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Creating a basic plot

plt.plot(x, y)

Displaying the plot

plt.show()

Adding Titles and LabelsTitle: Add a title to the entire plot to provide context.

plt.plot(x, y)

plt.title("Sine Wave")

plt.show()

Axis Labels Label the x and y axes to indicate what each axis represents.

plt.plot(x, y)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

174 Periyar University – CDOE| Self-Learning Material

plt.title("Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.show()

Adding a Legend A legend helps identify different data series in the plot. Use the label

parameter in the plot function and then call plt.legend().

plt.plot(x, y, label='sin(x)')

plt.plot(x, np.cos(x), label='cos(x)')

plt.title("Sine and Cosine Waves")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.legend()

plt.show()

Adding a Grid A grid improves the readability of the plot by making it easier to align

data points with the axes.

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.grid(True)

plt.show()

Adding Annotations Annotations are useful for highlighting specific points or areas on

the plot.

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

Adding an annotation

plt.annotate('Max Point', xy=(np.pi/2, 1), xytext=(np.pi/2+1, 1.5),

arrowprops=dict(facecolor='black', shrink=0.05))

plt.grid(True)

plt.show()

Adding Text You can add custom text at any location on the plot using plt.text().

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

175 Periyar University – CDOE| Self-Learning Material

Adding text

plt.text(5, 0, "Center", fontsize=12, ha='center')

plt.grid(True)

plt.show()

Multiple Subplots Create a grid of subplots using plt.subplots(), allowing multiple plots

within a single figure.

fig, axs = plt.subplots(2, 2, figsize=(10, 8))

Plotting on each subplot

axs[0, 0].plot(x, y)

axs[0, 0].set_title('Sine')

axs[0, 1].plot(x, np.cos(x), 'r')

axs[0, 1].set_title('Cosine')

axs[1, 0].plot(x, np.tan(x), 'g')

axs[1, 0].set_title('Tangent')

axs[1, 1].plot(x, -y, 'k')

axs[1, 1].set_title('Negative Sine')

plt.tight_layout()

plt.show()

Customizing Plot Elements Line Styles and Colors Customize the appearance of the

lines in your plot.

plt.plot(x, y, color='blue', linestyle='--', linewidth=2, marker='o',

markersize=5)

plt.title("Customized Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.grid(True)

plt.show()

Axis LimitsControl the range of the axes to focus on specific data ranges.

plt.plot(x, y)

plt.title("Sine Wave with Axis Limits")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

Setting axis limits

plt.xlim(0, 5)

plt.ylim(-1, 1)

plt.grid(True)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

176 Periyar University – CDOE| Self-Learning Material

plt.show()

Adding Multiple Figures You can create and manage multiple figures using plt.figure().

First figure

plt.figure()

plt.plot(x, y)

plt.title("Figure 1: Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

Second figure

plt.figure()

plt.plot(x, np.cos(x), 'r')

plt.title("Figure 2: Cosine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.show()

Saving Plots Save your plots to files using plt.savefig().

plt.plot(x, y)

plt.title("Sine Wave")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.grid(True)

Saving the plot

plt.savefig("sine_wave.png")

plt.savefig("sine_wave.pdf")

plt.show()

By adding various elements to your Matplotlib plots, you can significantly enhance

their readability and informativeness. Here's a recap of what we covered:

1. Titles and Labels: Add context and describe your axes.

2. Legend: Identify different data series.

3. Grid: Improve readability.Annotations and Text: Highlight specific points and

add custom notes.

4. Multiple Subplots: Create complex figures with multiple plots.

5. Customization: Adjust line styles, colors, and axis limits.

6. Multiple Figures: Manage multiple plots in separate windows.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

177 Periyar University – CDOE| Self-Learning Material

7. Saving Plots: Export plots to different file formats.

Using these techniques, you can create detailed and highly informative visualizations

tailored to your specific data analysis needs.

4.3.3– LINE CHARTS – BAR CHARTS – PIE CHARTS

Line Charts Line charts are suitable for showing trends over time or continuous

data.

import matplotlib.pyplot as plt

import numpy as np

Generating some data

x = np.linspace(0, 10, 100)

y = np.sin(x)

Creating a line chart

plt.plot(x, y)

plt.title("Line Chart")

plt.xlabel("X Axis")

plt.ylabel("Y Axis")

plt.grid(True)

plt.show()

Bar ChartsBar charts are effective for comparing categorical data or showing changes

over time.

Generating some data

categories = ['A', 'B', 'C', 'D']

values = [5, 7, 3, 9]

Creating a bar chart

plt.bar(categories, values, color='skyblue')

plt.title("Bar Chart")

plt.xlabel("Categories")

plt.ylabel("Values")

plt.grid(axis='y')

plt.show()

Pie ChartsPie charts are useful for displaying proportions of a whole.

Generating some data

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

178 Periyar University – CDOE| Self-Learning Material

labels = ['A', 'B', 'C', 'D']

sizes = [15, 30, 45, 10]

colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue']

explode = (0.1, 0, 0, 0) # Explode the first slice

Creating a pie chart

plt.pie(sizes, explode=explode, labels=labels, colors=colors,

autopct='%1.1f%%', shadow=True, startangle=140)

plt.title("Pie Chart")

plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a

circle.

plt.show()

Line Charts: Suitable for showing trends over time or continuous data.

Bar Charts: Effective for comparing categorical data or showing changes over time.

Pie Charts: Useful for displaying proportions of a whole.

LET US SUM UP

In this unit, we explored data visualization using Matplotlib, focusing on its

architecture and the Pyplot module. We learned about the plotting window and how to

add various elements like titles, labels, and legends to charts. We covered the creation

of line charts to display trends, bar charts for comparing categorical data, and pie

charts to illustrate proportions. Through practical examples, we saw how these

visualizations help in interpreting and presenting data effectively. This foundational

knowledge equips us with the skills to create informative and aesthetically pleasing

visual representations of data.

Check your progress

1. What is the primary purpose of Matplotlib in Python?

A) Data manipulation

B) Data visualization

C) Data storage

D) Data encryption

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

179 Periyar University – CDOE| Self-Learning Material

2. Which module in Matplotlib is commonly used for plotting?

A) pyplot

B) plotter

C) graph

D) plotlib

3. What is the command to import the pyplot module from Matplotlib?

A) import Matplotlib as plt

B) import pyplot as plt

C) from matplotlib import pyplot as plt

D) import matplotlib.pyplot as plot

4. In a line chart, what does each point on the line represent?

A) A different dataset

B) A data value at a specific position

C) A category label

D) A legend item

5. Which method is used to create a new figure in Matplotlib?

A) plt.show()

B) plt.figure()

C) plt.create()

D) plt.new()

6. How can you add a title to a plot in Matplotlib?

A) plt.add_title("Title")

B) plt.title("Title")

C) plt.set_title("Title")

D) plt.name("Title")

7. What is the command to display a plot in Matplotlib?

A) plt.show()

B) plt.display()

C) plt.render()

D) plt.plot()

8. Which method is used to label the x-axis in a plot?

A) plt.x_label("Label")

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

180 Periyar University – CDOE| Self-Learning Material

B) plt.xlabel("Label")

C) plt.axis_label("Label")

D) plt.xname("Label")

9. How do you create a bar chart in Matplotlib?

A) plt.plot()

B) plt.bar()

C) plt.line()

D) plt.barchart()

10. What function is used to create a pie chart in Matplotlib?

A) plt.pie()

B) plt.piechart()

C) plt.pie_plot()

D) plt.chart()

11. Which attribute in a bar chart specifies the heights of the bars?

A) heights

B) values

C) width

D) height

12. How can you add a legend to a plot?

A) plt.add_legend()

B) plt.legend()

C) plt.create_legend()

D) plt.show_legend()

13. What is the purpose of the 'label' parameter in plot functions?

A) To label data points

B) To create axis labels

C) To add a title to the plot

D) To specify the legend text

14. Which function would you use to set the limits of the x-axis?

A) plt.set_xlim()

B) plt.xlim()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

181 Periyar University – CDOE| Self-Learning Material

C) plt.limit_x()

D) plt.set_axis_limit()

15. What does the 'color' parameter in a plotting function do?

A) Sets the background color

B) Sets the color of the plot lines or markers

C) Sets the axis color

D) Sets the title color

16. How do you save a plot as an image file in Matplotlib?

A) plt.save()

B) plt.savefig()

C) plt.saveimage()

D) plt.export()

17. Which function is used to create subplots in a figure?

A) plt.subplot()

B) plt.subplots()

C) plt.add_subplot()

D) plt.create_subplot()

18. In a pie chart, what does the 'autopct' parameter control?

A) The colors of the slices

B) The size of the pie

C) The format of the percentage labels

D) The spacing between slices

19. What is the 'figsize' parameter used for?

A) Setting the resolution of the plot

B) Setting the size of the figure

C) Setting the size of the labels

D) Setting the size of the legend

20. How do you set a grid on a plot?

A) plt.grid()

B) plt.add_grid()

C) plt.show_grid()

D) plt.set_grid()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

182 Periyar University – CDOE| Self-Learning Material

21. What does the 'linewidth' parameter control in a plot?

A) The width of the plot frame

B) The width of the plot title

C) The width of the lines in the plot

D) The width of the legend border

22. In a scatter plot, which parameter controls the size of the points?

A) size

B) s

C) point_size

D) marker_size

23. How can you create a horizontal bar chart?

A) plt.barh()

B) plt.hbar()

C) plt.bar(horizontal=True)

D) plt.barsideways()

24. What does the 'alpha' parameter control in Matplotlib plots?

A) Line thickness

B) Transparency level

C) Color intensity

D) Plot resolution

25. How do you create a line chart with multiple lines?

A) plt.lines()

B) plt.multiline()

C) plt.plot() multiple times

D) plt.linechart()

26. In Matplotlib, what is the 'dpi' parameter used for?

A) Dot per inch resolution

B) Data point interval

C) Depth pixel intensity

D) Dynamic plot interval

27. Which method is used to clear the current figure?

A) plt.clear()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

183 Periyar University – CDOE| Self-Learning Material

B) plt.clf()

C) plt.reset()

D) plt.delete()

28. How do you set the font size of labels in a plot?

A) fontsize parameter

B) labelsize parameter

C) plt.set_labelsize()

D) plt.font()

29. What is the purpose of 'plt.tight_layout()'?

A) To fit the plot within the figure area

B) To adjust the padding between and around subplots

C) To reduce the margin size

D) To increase the plot size

30. How do you change the marker style in a plot?

A) marker parameter

B) style parameter

C) mark parameter

D) plt.markerstyle()

Unit Summary

In this unit, we delved into the fundamentals of working with Python packages

such as NumPy and Pandas for data manipulation and visualization. We began by

exploring NumPy, focusing on its primary data structure, the Ndarray, and performing

basic operations like indexing, slicing, and iteration. We then transitioned to Pandas,

where we learned about the Series and DataFrame, along with Index Objects for

efficient data labeling and alignment. Next, we explored data visualization using

Matplotlib, understanding its architecture, and utilizing Pyplot for creating various types

of charts like line charts, bar charts, and pie charts. Through this unit, we gained

essential skills in handling numerical data effectively and creating insightful

visualizations for data analysis and interpretation.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

184 Periyar University – CDOE| Self-Learning Material

Glossary

 NumPy: A Python library used for numerical computing, providing support for

large, multi-dimensional arrays and matrices, along with a collection of

mathematical functions to operate on these arrays.

 Ndarray: Short for "N-dimensional array," it is the primary data structure in

NumPy for representing arrays of numerical data.

 Indexing: The process of accessing individual elements of an array by

specifying their position within the array.

 Slicing: A technique in NumPy for extracting a portion of an array by specifying

a range of indices.

 Array Manipulation: Operations performed on arrays to modify their shape,

size, or content, such as reshaping, concatenating, or splitting arrays.

 Pandas: A Python library built on top of NumPy, providing data structures like

Series and DataFrame for data manipulation and analysis.

 Series: A one-dimensional labeled array in Pandas, capable of holding data of

any type.

 DataFrame: A two-dimensional labeled data structure in Pandas, resembling a

spreadsheet or SQL table, capable of holding heterogeneous data types.

 Index Objects: Objects used in Pandas to label and align data within Series

and DataFrame structures, facilitating efficient data manipulation and retrieval.

 Matplotlib: A comprehensive library for creating static, animated, and

interactive visualizations in Python, commonly used for data visualization tasks.

 Pyplot: The Matplotlib module providing a MATLAB-like interface for creating

plots and visualizations.

 Plotting Window: The area where plots and visualizations are rendered within

Matplotlib, providing a canvas for displaying graphical representations of data.

 Line Charts: A type of chart used to display data as a series of data points

connected by straight line segments, commonly used to visualize trends over

time.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

185 Periyar University – CDOE| Self-Learning Material

 Bar Charts: A type of chart used to represent categorical data with rectangular

bars, where the length of each bar corresponds to the value being represented.

 Pie Charts: A circular statistical graphic divided into slices to illustrate

numerical proportions, often used to show the composition of a categorical

whole.

Self – Assessment Questions

2. Evaluate the Use of Ndarrays in NumPy: Discuss the advantages and

disadvantages of using Ndarrays compared to traditional Python lists for

numerical computations.

3. Summarize the Functionality of Pandas Series and DataFrames: Provide a brief

overview of the features and capabilities of Pandas Series and DataFrames for

data manipulation and analysis.

4. Compare Index Objects in Pandas and NumPy: Highlight the differences

between Index Objects in Pandas and NumPy, and explain their respective

roles in data manipulation.

5. Elucidate the Role of Matplotlib in Data Visualization: Explain how Matplotlib

facilitates data visualization in Python, including its architecture and key

components.

6. Explain the Process of Creating Line Charts in Matplotlib: Describe step-by-

step how to create line charts using Matplotlib, including data preparation, plot

creation, and customization options.

7. Compare Bar Charts and Pie Charts for Data Representation: Compare and

contrast bar charts and pie charts in terms of their suitability for visualizing

different types of data and conveying information effectively.

8. Evaluate the Performance of NumPy and Pandas for Data Manipulation:

Assess the performance of NumPy and Pandas libraries in terms of speed,

memory usage, and ease of use for common data manipulation tasks.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

186 Periyar University – CDOE| Self-Learning Material

9. Summarize the Benefits of Using NumPy and Pandas Together: Summarize

the advantages of using NumPy and Pandas together for data analysis and

manipulation tasks, highlighting how they complement each other's

functionality.

Activities / Exercises / Case Studies

1. NumPy Practice Exercises:

 Create a NumPy array with random integer values and perform basic

arithmetic operations on it.

 Slice and index the array to extract specific elements or subsets of data.

 Reshape the array and perform array manipulation operations like

concatenation and splitting.

 Use NumPy functions to compute statistical measures such as mean, median,

and standard deviation of the array.

2.Pandas Case Study:

 Analyze a dataset using Pandas to gain insights into the data.

 Load a CSV file into a Pandas DataFrame and explore its structure and

contents.

 Perform data cleaning tasks such as handling missing values and removing

duplicates.

 Use Pandas functions to calculate descriptive statistics and visualize data

using histograms and scatter plots.

3. Matplotlib Data Visualization Exercise:

 Generate synthetic data or use a dataset to create visualizations using

Matplotlib.

 Create line charts to visualize trends over time or across categories.

 Use bar charts to compare different categories or groups within the data.

 Create pie charts to represent the composition of categorical data.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

187 Periyar University – CDOE| Self-Learning Material

 Customize the appearance of the plots by adding titles, labels, legends, and

adjusting colors and styles.

Answers for check your progress

Modules S.No. Answers

Module 1

1
 C) n-dimensional array

2 A) np.array([1, 2, 3, 4])

3 C) np.zeros(shape)

4 B) arr[2]

5 C) reshape()

6 B) arr[:3]

7
 B) np.arange(start, stop, step)

8 B) A 3x3 identity matrix

9 C) np.hstack((a, b))

10 B) np.mean(arr)

Module 2

 1. B) Numerical and scientific computing

2. C) ndarray

3. A) np.array([1, 2, 3])

4. A) np.add()

5. C) The dimensions of the array

6. A) arr[1, 2]

7. A) np.concatenate()

8. C) Number of dimensions

9. A) arr.reshape(3, 3)

10. A) np.max()

11. B) Series

 12. D) pd.DataFrame(dict)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

188 Periyar University – CDOE| Self-Learning Material

 13. A) pd.read_csv()

 14. B) df['age']

 15. A) df.columns

 16. A) df['total'] = df['A'] + df['B']

 17. B) Selects data by integer-location based indexing

 18. A) df.fillna(df.mean())

 19. A) df.groupby('group')

 20. A) df.sort_values('A')

 21. B) To label and align data

 22. A) df.to_numpy()

 23. A) To get the first few rows of a DataFrame

 24. B) pd.append()

 25. A) Provides a summary of statistics for numerical

columns

 26. A) df.rename(columns=new_names)

 27.
A) Swaps rows and columns

 28.
A) pd.merge()

 29.
A) To create a spreadsheet-style pivot table

 30.
A) df.reset_index()

Module 3 1.
B) Data visualization

2.
A) pyplot

3.
C) from matplotlib import pyplot as plt

4.
B) A data value at a specific position

5.
B) plt.figure()

6.
B) plt.title("Title")

7.
A) plt.show()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

189 Periyar University – CDOE| Self-Learning Material

8.
B) plt.xlabel("Label")

9.
B) plt.bar()

10.
A) plt.pie()

11.
D) height

12.
B) plt.legend()

13.
D) To specify the legend text

14.
B) plt.xlim()

15.
B) Sets the color of the plot lines or markers

16.
B) plt.savefig()

17.
B) plt.subplots()

18.
C) The format of the percentage labels

19.
B) Setting the size of the figure

20.
A) plt.grid()

21.
C) The width of the lines in the plot

22.
B) s

23.
A) plt.barh()

24.
B) Transparency level

25.
C) plt.plot() multiple times

26.
A) Dot per inch resolution

27.
B) plt.clf()

28.
B) labelsize parameter

29.
B) To adjust the padding between and around

subplots

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

190 Periyar University – CDOE| Self-Learning Material

30.
A) marker parameter

Suggested Readings

1. Eidelman, A. (2020). Python data science handbook by jake VANDERPLAS

(2016). Statistique et Société, 8(2), 45-47.

2. McKinney, W. (2022). Python for data analysis. " O'Reilly Media, Inc.".

3. Idris, I. (2015). NumPy: Beginner's Guide. Packt Publishing Ltd.

Open-Source E-Content Links

1. https://numpy.org/doc/

2. https://pandas.pydata.org/docs/

3. https://matplotlib.org/stable/index.html

References

1. "Python Data Science Handbook" Online Version

2. NumPy User Guide

3. Pandas User Guide

4. Matplotlib User Guide

5. Kaggle: Python Data Science Tutorial

https://numpy.org/doc/
https://pandas.pydata.org/docs/
https://matplotlib.org/stable/index.html

CDOE - ODL M.C.A – SEMESTER I UNIT - 5

 187 Periyar University – CDOE| Self-Learning Material

Django

UNIT OBJECTIVES

In this unit, students will learn the fundamentals of Django, including installation

and project creation. They'll delve into designing data schemas and creating an

administration site for models. Through QuerySets and Managers, they'll grasp object

retrieval concepts, culminating in constructing list and detail views for effective

application development.

UNIT V – DJANGO

Unit V: Django: Installing Django- Building an Application - Project Creation

- Designing the Data Schema - Creating an administration site for models -

Working with QuerySets and Managers - Retrieving Objects - Building List and

Detail Views

Section Topic Page No.

UNIT – V

Unit Objectives

Section 5.1 Django 188

5.1.1 Installing Django and Building an Application 188

5.1.2 Project Creation 193

5.1.3 Designing with Data Schema 195

5.1.4 Creating an administration site for models 200

5.1.5 Working with Querysets and Managers 203

5.1.6 Retrieving Objects 207

5.1.7 Building List and Detail Views 212

 Let Us Sum Up 216

 Check Your Progress 216

5.2 Unit- Summary 220

5.3 Glossary 220

5.4 Self- Assessment Questions 222

5.5 Activities / Exercises / Case Studies 223

5.6 Answers for Check your Progress 224

5.7 References and Suggested Readings 225

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

188 Periyar University – CDOE| Self-Learning Material

SECTION 5. 1: DJANGO

5.1.1– INSTALLING DJANGO AND BUILDING YOUR FIRST APPLICATION

Step 1: Install Django

Set up a virtual environment (recommended):

Open a terminal or command prompt.

Navigate to your desired project directory.

Create a virtual environment:

sh

python -m venv myenv

Activate the virtual environment:

On Windows:

sh

myenv\Scripts\activate

On macOS/Linux:

sh

source myenv/bin/activate

Install Django:

Once the virtual environment is activated, install Django using pip:

sh

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

189 Periyar University – CDOE| Self-Learning Material

pip install django

Verify installation:

Check the Django version to ensure it is installed correctly:

sh

python -m django --version

Step 2: Create a Django Project

Start a new project:

Use the django-admin command to create a new project:

sh

Periyar University – CDOE| Self-Learning Materialdjango-admin startproject

myproject

Navigate into the project directory:

sh

cd myproject

Understand the project structure:

Your project directory should contain the following files and directories:

myproject/

 manage.py

 myproject/

 __init__.py

 settings.py

 urls.py

 wsgi.py

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

190 Periyar University – CDOE| Self-Learning Material

Run the development server:

Use the manage.py script to run the server:

Sh :python manage.py runserver

Open your web browser and go to http://127.0.0.1:8000/ to see the Django welcome

page.

Step 3: Create a Django Application

Use the start app command to create a new app within your project:

Sh :python manage.py startapp myapp

This will create a new directory called myapp with the following structure:

markdown

myapp/

 migrations/

 __init__.py

 __init__.py

 admin.py

 apps.py

 models.py

 tests.py

 views.py

Register the app:

Open myproject/settings.py and add myapp to the INSTALLED_APPS list:

INSTALLED_APPS = [

 ...

 'myapp',]

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

191 Periyar University – CDOE| Self-Learning Material

Create a view:

Open myapp/views.py and define a simple view:

from django. Http import HTTP Response

def index(request):

 return HTTP Response ("Hello, world. You're at the myapp index.")

Map the view to a URL:

Create a new file myapp/urls.py and add the following code:

from Django. URLs import path.

from . import views

urlpatterns = [

 path ('', views.index, name='index'),]

Include the app’s URLs in the project’s main URL configuration. Open

myproject/urls.py and modify it to include your app’s URLs:

from django. contrib import admin

from django.urls import include, path

urlpatterns = [

 path('myapp/', include('myapp.urls')),

 path('admin/', admin.site.urls),]

View the application:

Run the server again if it's not running:

Sh :python manage.py runserver Navigate to http://127.0.0.1:8000/myapp/ to see your

application in action.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

192 Periyar University – CDOE| Self-Learning Material

Step 4: Create a Template

Create a template directory:

Inside myapp, create a directory called templates.

Inside templates, create another directory named myapp.

Create a template file:

Create a file index.html inside myapp/templates/myapp and add some HTML content:

html

<!DOCTYPE html>

<html>

<head>

 <title>MyApp</title>

</head>

<body>

 <h1>Hello, world. You're at the myapp index.</h1>

</body>

</html>

Update the view to use the template:

Open myapp/views.py and modify the index view to render the template:

from django.shortcuts import render

def index(request):

 return render(request, 'myapp/index.html')

View the updated application:

Refresh the page http://127.0.0.1:8000/myapp/ to see the changes.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

193 Periyar University – CDOE| Self-Learning Material

Congratulations! You’ve successfully installed Django, created a project, built an app,

and rendered a template. From here, you can continue to expand your application by

adding models, forms, and more complex views and templates.

5.1.2– PROJECT CREATION

Django project from scratch, including setting up the project, designing the data

schema, and building a simple application.

Step 1: Set Up Your Django Environment

Set up a virtual environment:

Open a terminal or command prompt.

Navigate to your desired project directory.

Create a virtual environment:

sh

python -m venv myenv

Activate the virtual environment:

On Windows:

sh

myenv\Scripts\activate

On macOS/Linux:

sh

source myenv/bin/activate

Install Django:

With the virtual environment activated, install Django using pip:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

194 Periyar University – CDOE| Self-Learning Material

sh

pip install django

Verify installation:

Check the Django version to ensure it is installed correctly:

sh

python -m django --version

Step 2: Create a Django Project

Start a new project:

Use the django-admin command to create a new project:

sh

django-admin startproject myproject

Navigate into the project directory:

sh

cd myproject

Run the development server:

Use the manage.py script to run the server:

sh

python manage.py runserver

Open your web browser and go to http://127.0.0.1:8000/ to see the Django welcome

page.

Step 3: Create a Django Application

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

195 Periyar University – CDOE| Self-Learning Material

Create an app:

Use the startapp command to create a new app within your project:

sh

python manage.py startapp myapp

This will create a new directory called myapp with the following structure:

markdown

myapp/

 migrations/

 __init__.py

 __init__.py

 admin.py

 apps.py

 models.py

 tests.py

 views.py

Register the app:

Open myproject/settings.py and add myapp to the INSTALLED_APPS list:

INSTALLED_APPS = [

 ...

 'myapp',

]

5.1.3 DESIGNING THE DATA SCHEMA

Define your models:

In your app’s models.py file, define the models. For example, let’s create a

simple blog with Author, Post, and Comment models:

myapp/models.py

from django.db import models

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

196 Periyar University – CDOE| Self-Learning Material

class Author(models.Model):

 name = models.CharField(max_length=100)

 email = models.EmailField(unique=True)

 def __str__(self):

 return self.name

class Post(models.Model):

 title = models.CharField(max_length=200)

 content = models.TextField()

 created_at = models.DateTimeField(auto_now_add=True)

 author = models.ForeignKey(Author, on_delete=models.CASCADE)

 def __str__(self):

 return self.title

class Comment(models.Model):

 post = models.ForeignKey(Post, related_name='comments',

on_delete=models.CASCADE)

 name = models.CharField(max_length=80)

 email = models.EmailField()

 body = models.TextField()

 created_at = models.DateTimeField(auto_now_add=True)

 updated_at = models.DateTimeField(auto_now=True)

 def __str__(self):

 return f'Comment by {self.name} on {self.post}'

Create and apply migrations:

Generate migration files based on your models:

sh

python manage.py makemigrations

Apply the migrations to create the database tables:

sh

python manage.py migrate

Step 5: Admin Interface

Register models in the admin site:

To manage your models via Django’s admin interface, register them in the admin.py

file:

myapp/admin.py

from django.contrib import admin

from .models import Author, Post, Comment

admin.site.register(Author)

admin.site.register(Post)

admin.site.register(Comment)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

197 Periyar University – CDOE| Self-Learning Material

Access the admin interface:

Create a superuser to access the admin interface:

sh

python manage.py createsuperuser

Follow the prompts to set up your superuser account.

Start the development server and log in to the admin site at

http://127.0.0.1:8000/admin/ using the superuser credentials.

Step 6: Creating Views and Templates

Create a view:

Open myapp/views.py and define a simple view:

myapp/views.py

from django.shortcuts import render

from .models import Post

def index(request):

 posts = Post.objects.all()

 return render(request, 'myapp/index.html', {'posts': posts})

Map the view to a URL:

Create a new file myapp/urls.py and add the following code:

myapp/urls.py

from django.urls import path

from . import views

urlpatterns = [

 path('', views.index, name='index'),

]

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

198 Periyar University – CDOE| Self-Learning Material

- Include the app’s URLs in the project’s main URL configuration. Open

`myproject/urls.py` and modify it to include your app’s URLs:

myproject/urls.py

from django.contrib import admin

from django.urls import include, path

urlpatterns = [

 path ('myapp/', include('myapp.urls')),

 path('admin/', admin.site.urls),]

Create a template:

Inside myapp, create a directory called templates, and within it create another directory

named myapp.

Create a file index.html inside myapp/templates/myapp and add some HTML content:

html

<!-- myapp/templates/myapp/index.html -->

<!DOCTYPE html>

<html>

<head>

 <title>MyApp</title>

</head>

<body>

 <h1>Posts</h1>

 {% for post in posts %}

 {{ post.title }} by {{ post.author.name }}

 {% endfor %}

</body>

</html>

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

199 Periyar University – CDOE| Self-Learning Material

View the application:

Run the server again if it's not running:

sh

python manage.py runserver

Navigate to http://127.0.0.1:8000/myapp/ to see your application in action.

Step 7: Testing the Data Schema

Create test data:

Use the Django shell to create instances:

Sh

python manage.py shell

from myapp.models import Author, Post, Comment

author = Author.objects.create(name='John Doe',

email='john@example.com')

post = Post.objects.create(title='First Post', content='This is the content

of the first post.', author=author)

comment = Comment.objects.create(post=post, name='Jane Doe',

email='jane@example.com', body='Great post!')

Query the database:

Use Django’s ORM to fetch and display data.

posts = Post.objects.all ()

for post in posts:

 print (post. title, post.author.name)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

200 Periyar University – CDOE| Self-Learning Material

By following these steps, you will have a fully functional Django project with a basic

data schema, views, templates, and an admin interface. This foundation will allow you

to expand your application further, adding more features and complexity as needed.

5.1.4– CREATING AN ADMINSTRATIVE SITE FOR MODELS

Creating an administration site for your models in Django involves using

Django's built-in admin interface. This interface allows you to manage your

application's data conveniently through a web-based interface. Here’s a step-by-step

guide to setting up the admin site for your models:

Step 1: Register Models with the Admin Site

To manage your models through the Django admin interface, you need to register them

with the admin site. This is done in the admin.py file of your application.

Open admin.py:

Navigate to your app's admin.py file. For example, if your app is named myapp, open

myapp/admin.py.

Register your models:

Import your models and register them with the admin site. Here’s an example for a

blog application with Author, Post, and Comment models:

myapp/admin.py

from django.contrib import admin

from .models import Author, Post, Comment

Register your models here.

admin.site.register(Author)

admin.site.register(Post)

admin.site.register(Comment)

Step 2: Customize the Admin Interface

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

201 Periyar University – CDOE| Self-Learning Material

To make the admin interface more user-friendly and informative, you can customize it

by creating admin classes. These classes allow you to control how the models are

displayed and managed in the admin interface.

Create admin classes:

Define admin classes to customize the model representations in the admin interface.

For example, you might want to display specific fields, add search functionality, and

list filters.

myapp/admin.py

from django.contrib import admin

from .models import Author, Post, Comment

class AuthorAdmin(admin.ModelAdmin):

 list_display = ('name', 'email')

 search_fields = ('name', 'email')

class PostAdmin(admin.ModelAdmin):

 list_display = ('title', 'author', 'created_at')

 list_filter = ('author', 'created_at')

 search_fields = ('title', 'content')

class CommentAdmin(admin.ModelAdmin):

 list_display = ('post', 'name', 'email', 'created_at')

 list_filter = ('post', 'created_at')

 search_fields = ('name', 'email', 'body')

admin.site.register(Author, AuthorAdmin)

admin.site.register(Post, PostAdmin)

admin.site.register(Comment, CommentAdmin)

Step 3: Access the Admin Site

Create a superuser:

To access the admin interface, you need a superuser account. If you haven't created

one yet, you can do so using the following command:

sh

python manage.py createsuperuser

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

202 Periyar University – CDOE| Self-Learning Material

Follow the prompts to create a superuser account with a username, email, and

password.

Run the development server:

Start the Django development server if it’s not already running:

sh

python manage.py runserver

Log in to the admin site:

Open your web browser and navigate to http://127.0.0.1:8000/admin/.

Log in using the superuser credentials you created.

Step 4: Using the Admin Interface

Add, Edit, and Delete Records:

Once logged in, you will see your registered models in the admin interface.

You can add, edit, and delete records for your models using the provided forms.

Explore Admin Customization Options:

Django’s admin interface is highly customizable. Explore the Django admin

documentation to learn about more advanced customization options like inlines,

custom actions, and overriding templates.

Example: Complete admin.py File

Here's a complete example of a customized admin.py file for a blog application:

myapp/admin.py

from django.contrib import admin

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

203 Periyar University – CDOE| Self-Learning Material

from .models import Author, Post, Comment

class AuthorAdmin(admin.ModelAdmin):

 list_display = ('name', 'email')

 search_fields = ('name', 'email')

class PostAdmin(admin.ModelAdmin):

 list_display = ('title', 'author', 'created_at')

 list_filter = ('author', 'created_at')

 search_fields = ('title', 'content')

class CommentAdmin(admin.ModelAdmin):

 list_display = ('post', 'name', 'email', 'created_at')

 list_filter = ('post', 'created_at')

 search_fields = ('name', 'email', 'body')

admin.site.register(Author, AuthorAdmin)

admin.site.register(Post, PostAdmin)

admin.site.register(Comment, CommentAdmin)

By following these steps, you will have a fully functional administration site for your

Django models, allowing you to manage your application's data efficiently.

5.1.5– WORKING WITH QUERY SETS AND MANAGERS

Working with query sets and managers is a core part of interacting with your

database in Django. Django’s ORM (Object-Relational Mapping) provides a powerful

and intuitive way to retrieve and manipulate your database records. Here’s how to

effectively work with query sets and managers to retrieve objects.

Understanding Query Sets

A Query Set represents a collection of objects from your database. It can have zero,

one, or many filters to restrict the number of results returned. Query Sets are lazy,

meaning that they don’t hit the database until they are actually evaluated.

Basic Query Set Methods

Retrieving all objects:

Use the all() method to retrieve all objects from a model.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

204 Periyar University – CDOE| Self-Learning Material

from myapp.models import Post

all_posts = Post.objects.all()

Filtering objects:

Use the filter() method to retrieve objects that match certain criteria.

published_posts = Post.objects.filter(status='published')

Excluding objects:

Use the exclude() method to exclude objects that match certain criteria.

unpublished_posts = Post.objects.exclude(status='published')

Retrieving a single object:

Use the get() method to retrieve a single object that matches certain criteria. This

method will raise Does Not Exist if no object is found and Multiple Objects Returned if

more than one object is found.

post = Post.objects.get(id=1)

Ordering results:

Use the order_by() method to order the results.

ordered_posts = Post.objects.all().order_by('title')

Limiting results:

Use slicing to limit the number of results returned.

limited_posts = Post.objects.all()[:10]

Common QuerySet Methods

Count:

Use the count() method to get the number of objects in the Query Set.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

205 Periyar University – CDOE| Self-Learning Material

post_count = Post.objects.count()

First and Last:

Use the first() and last() methods to get the first and last object in the Query Set.

first_post = Post.objects.first()

last_post = Post.objects.last()

Exists:

Use the exists() method to check if the Query Set contains any results.

has_posts = Post.objects.exists()

Distinct:

Use the distinct() method to remove duplicate results.

unique_authors = Post.objects.values('author').distinct()

MANAGERS IN DJANGO

Managers are the interface through which database query operations are

provided to Django models. The default manager for every model is objects, but you

can define your own managers to add custom query methods.

Custom Manager:

Define a custom manager by inheriting from models.Manager.

from django.db import models

class PublishedManager(models.Manager):

 def get_queryset(self):

 return super().get_queryset().filter(status='published')

class Post(models.Model):

 title = models.CharField(max_length=200)

 content = models.TextField()

 status = models.CharField(max_length=10, choices=(('draft', 'Draft'),

('published', 'Published')))

 published = PublishedManager()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

206 Periyar University – CDOE| Self-Learning Material

Using the Custom Manager:

published_posts = Post.published.all()

Advanced QuerySet Operations

Chaining:

Query Sets can be chained to combine multiple filters and other methods.

recent_published_posts = Post.objects.filter(status='published').order_by('-

created_at')[:5]

Annotations:

Use the annotate() method to add additional data to each object in the Query Set.

from django.db.models import Count

authors_with_post_count =

Author.objects.annotate(post_count=Count('post'))

Select Related and Prefetch Related:

Use select_related() and prefetch_related() to optimize database access by reducing

the number of queries.

Eager load the related author for each post

posts_with_authors = Post.objects.select_related('author').all()

Example Usage

Let's consider an example with Author, Post, and Comment models.

Retrieve all posts:

all_posts = Post.objects.all()

Retrieve posts by a specific author:

author = Author.objects.get(name='John Doe')

johns_posts = Post.objects.filter(author=author)

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

207 Periyar University – CDOE| Self-Learning Material

Retrieve posts with comments:

posts_with_comments = Post.objects.prefetch_related('comments').all()

Retrieve the number of comments for each post:

posts_with_comment_count =

Post.objects.annotate(comment_count=Count('comments'))

By mastering Query Sets and managers, you can efficiently interact with your Django

models, performing complex queries and optimizations to ensure your application runs

smoothly.

5.1.6– RETRIEVING OBJECTS

Retrieving objects from the database is a fundamental task when working with

Django's ORM. Below is a detailed guide on how to retrieve objects using various

Query Set methods and managers.

Basic Query Set Methods:

1. Retrieving All Objects

To retrieve all objects from a model, use the all() method:

from myapp.models import Post

all_posts = Post.objects.all()

2. Filtering Objects

To retrieve a subset of objects that match certain criteria, use the filter() method:

published_posts = Post.objects.filter(status='published')

3. Excluding Objects

To exclude objects that match certain criteria, use the exclude() method:

unpublished_posts = Post.objects.exclude(status='published')

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

208 Periyar University – CDOE| Self-Learning Material

4. Retrieving a Single Object

To retrieve a single object that matches certain criteria, use the get() method. This

method will raise DoesNotExist if no object is found and MultipleObjectsReturned if

more than one object is found:

post = Post.objects.get(id=1)

Ordering and Limiting QuerySets

5. Ordering Results

To order the results, use the order_by() method:

ordered_posts = Post.objects.all().order_by('title')

6. Limiting Results

To limit the number of results returned, use slicing:

limited_posts = Post.objects.all()[:10]

Aggregation and Annotations

7. Counting Objects

To count the number of objects in a QuerySet, use the count() method:

post_count = Post.objects.count()

8. Getting the First and Last Objects

To get the first and last object in a QuerySet, use the first() and last() methods:

first_post = Post.objects.first()

last_post = Post.objects.last()

9. Checking for Existence

To check if the QuerySet contains any results, use the exists() method:

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

209 Periyar University – CDOE| Self-Learning Material

has_posts = Post.objects.exists()

10. Removing Duplicates

To remove duplicate results, use the distinct() method:

unique_authors = Post.objects.values('author').distinct()

Using Managers in Django

Managers are the interface through which database query operations are provided to

Django models. By default, every model in Django has at least one manager called

objects. You can define your own managers to add custom query methods.

11. Custom Manager

To define a custom manager, inherit from models.Manager and override the

get_queryset method:

from django.db import models

class PublishedManager(models.Manager):

 def get_queryset(self):

 return super().get_queryset().filter(status='published')

class Post(models.Model):

 title = models.CharField(max_length=200)

 content = models.TextField()

 status = models.CharField(max_length=10, choices=(('draft', 'Draft'),

('published', 'Published')))

 published = PublishedManager()

12. Using the Custom Manager

To use the custom manager:

published_posts = Post.published.all()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

210 Periyar University – CDOE| Self-Learning Material

Advanced QuerySet Operations

13. Chaining QuerySets

QuerySets can be chained to combine multiple filters and other methods:

recent_published_posts =

Post.objects.filter(status='published').order_by('-created_at')[:5]

14. Annotating QuerySets

Use the annotate() method to add additional data to each object in the QuerySet:

from django.db.models import Count

authors_with_post_count =

Author.objects.annotate(post_count=Count('post'))

15. Optimizing Queries with select_related and prefetch_related

Use select_related() and prefetch_related() to optimize database access by reducing

the number of queries:

Eager load the related author for each post

posts_with_authors = Post.objects.select_related('author').all()

Example: Working with Author, Post, and Comment Models

Here’s an example of how to use these techniques with Author, Post, and Comment

models:

Retrieving All Posts

all_posts = Post.objects.all()

Retrieving Posts by a Specific Author

author = Author.objects.get(name='John Doe')

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

211 Periyar University – CDOE| Self-Learning Material

johns_posts = Post.objects.filter(author=author)

Retrieving Posts with Comments

posts_with_comments = Post.objects.prefetch_related('comments').all()

Retrieving the Number of Comments for Each Post

posts_with_comment_count =

Post.objects.annotate(comment_count=Count('comments'))

Using the Django Shell for Testing

To test these queries, use the Django shell:

sh

python manage.py shell

In the shell, you can run your queries:

from myapp.models import Author, Post, Comment

Retrieve all posts

all_posts = Post.objects.all()

Filter posts by status

published_posts = Post.objects.filter(status='published')

Get a single post by ID

post = Post.objects.get(id=1)

Count the number of posts

post_count = Post.objects.count()

Get the first post

first_post = Post.objects.first()

Check if any posts exist

has_posts = Post.objects.exists()

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

212 Periyar University – CDOE| Self-Learning Material

By mastering these Query Set methods and manager techniques, you can efficiently

retrieve and manipulate data in your Django application, ensuring your application runs

smoothly and effectively.

5.1.8 – BUILDING LIST AND DETAIL VIEWS

Building list and detail views in Django is an essential part of developing web

applications that display collections of objects and their detailed information. Here’s a

step-by-step guide to creating list and detail views using Django’s class-based views

(CBVs) and function-based views (FBVs).

Using Class-Based Views (CBVs)

Django provides generic views that can significantly reduce the amount of code you

need to write.

Step 1: Setting Up the Models

Assume you have a Post model as follows:

myapp/models.py

from django.db import models

class Post(models.Model):

 title = models.CharField(max_length=200)

 content = models.TextField()

 created_at = models.DateTimeField(auto_now_add=True)

 author = models.ForeignKey('Author', on_delete=models.CASCADE)

 def __str__(self):

 return self.title

Step 2: Creating List and Detail Views

List View: Use ListView to display a list of posts.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

213 Periyar University – CDOE| Self-Learning Material

Detail View: Use DetailView to display the details of a single post.

myapp/views.py

from django.views.generic import ListView, DetailView

from .models import Post

class PostListView(ListView):

 model = Post

 template_name = 'myapp/post_list.html'

 context_object_name = 'posts'

class PostDetailView(DetailView):

 model = Post

 template_name = 'myapp/post_detail.html'

 context_object_name = 'post'

Step 3: Setting Up URLs

Map the views to URLs in your app’s urls.py.

myapp/urls.py

from django.urls import path

from .views import Post ListView, Post Detail View

urlpatterns = [

 path('', PostListView.as_view(), name='post_list'),

 path('post/<int:pk>/', PostDetailView.as_view(), name='post_detail'),

]

Step 4: Creating Templates

Create templates to render the views.

post_list.html:

html

<!-- myapp/templates/myapp/post_list.html -->

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

214 Periyar University – CDOE| Self-Learning Material

<!DOCTYPE html>

<html>

<head>

 <title>Post List</title>

</head>

<body>

 <h1>Post List</h1>

 {% for post in posts %}

 {{ post.title }}

 {% endfor %}

</body>

</html>

post_detail.html:

html

<!-- myapp/templates/myapp/post_detail.html -->

<!DOCTYPE html>

<html>

<head>

 <title>{{ post.title }}</title>

</head>

<body>

 <h1>{{ post.title }}</h1>

 <p>{{ post.content }}</p>

 <p>Author: {{ post.author }}</p>

 <p>Created at: {{ post.created_at }}</p>

 Back to Post List

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

215 Periyar University – CDOE| Self-Learning Material

</body>

</html>

Using Function-Based Views (FBVs)

If you prefer to use function-based views, here’s how you can achieve the same

functionality.

Step 1: Creating List and Detail Views

List View: Use a function to display a list of posts.

Detail View: Use a function to display the details of a single post.

myapp/views.py

from django.shortcuts import render, get_object_or_404

from .models import Post

def post_list(request):

 posts = Post.objects.all()

 return render(request, 'myapp/post_list.html', {'posts': posts})

def post_detail(request, pk):

 post = get_object_or_404(Post, pk=pk)

 return render(request, 'myapp/post_detail.html', {'post': post})

Step 2: Setting Up URLs

Map the views to URLs in your app’s urls.py.

myapp/urls.py

from django.urls import path

from .views import post_list, post_detail

urlpatterns = [

 path('', post_list, name='post_list'),

 path('post/<int:pk>/', post_detail, name='post_detail'),

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

216 Periyar University – CDOE| Self-Learning Material

]

Step 3: Creating Templates

Use the same templates as shown above for class-based views.

Class-Based Views (CBVs): Use List View and Detail View to create concise and

reusable views.

Function-Based Views (FBVs): Use traditional functions to handle requests and render

templates.

Both methods have their place, and the choice depends on your project requirements

and personal preference. By following these steps, you can effectively create list and

detail views in Django to display collections of objects and their detailed information.

Let Us Sum Up

In this unit, we explored the process of working with Django, a high-level Python

web framework. We began with the installation of Django and the creation of a new

project. The process continued with building applications, which involves organizing

code into models, views, templates, and URLs. We designed the data schema using

Django's ORM (Object-Relational Mapping) by defining models that represent

database tables. We also set up an administration site to manage our models easily.

Working with Query Sets and Managers allowed us to retrieve and manipulate data

efficiently. Finally, we created list and detail views to display collections and individual

records of data, respectively. Through these steps, we learned how to leverage

Django's powerful features to develop robust and scalable web applications.

Check Your Progress

1. What command is used to install Django?

A) pip install Django

B) django install

C) pip get Django

D) install django

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

217 Periyar University – CDOE| Self-Learning Material

2. How do you start a new Django project?

A) django new projectname

B) django-admin startproject projectname

C) startproject projectname

D) createproject projectname

3. Which file contains the settings for a Django project?

A) urls.py

B) views.py

C) settings.py

D) models.py

4. Which command is used to create a new Django app?

A) django-admin startapp appname

B) createapp appname

C) startapp appname

D) django createapp appname

5. What is the primary purpose of models in Django?

A) To define URL patterns

B) To handle HTTP requests

C) To define the structure of the database

D) To render HTML templates

6. How do you define a CharField in a Django model?

A) models.TextField()

B) models.CharField(max_length=100)

C) models.CharField()

D) models.StringField()

7. Which command is used to apply migrations in Django?

A) python manage.py migrate

B) python manage.py applymigrations

C) python manage.py runmigrations

D) python manage.py makemigrations

8. What is the purpose of the Django admin site?

A) To handle static files

B) To manage database tables and records

C) To render HTML templates

D) To manage URL patterns

9. How do you register a model with the admin site?

A) admin.site.add_model(MyModel)

B) admin.site.register(MyModel)

C) admin.register(MyModel)

D) admin.add_model(MyModel)

10. What does QuerySet represent in Django?

A) A list of URLs

B) A list of database objects

C) A list of HTML templates

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

218 Periyar University – CDOE| Self-Learning Material

D) A list of views

11. Which method is used to filter QuerySets in Django?

A) get()

B) filter()

C) find()

D) select()

12. How do you retrieve a single object from a QuerySet in Django?

A) get()

B) filter()

C) select()

D) find()

13. What is the purpose of Django's URLs configuration?

A) To define database models

B) To define how URLs map to views

C) To handle static files

D) To manage the admin site

14. Which file typically contains URL patterns in a Django project?

A) settings.py

B) urls.py

C) views.py

D) models.py

15. How do you define a URL pattern in Django?

A) urlpatterns = [url('pattern', view)]

B) urlpatterns = [path('pattern/', view)]

C) urls = [path('pattern', view)]

D) urlpattern = [url('pattern/', view)]

16. What is the purpose of Django views?

A) To define the database schema

B) To handle HTTP requests and return responses

C) To manage the admin site

D) To configure settings

17. How do you render an HTML template in a Django view?

A) render(request, 'template.html')

B) return 'template.html'

C) request('template.html')

D) template('template.html')

18. What function is used to create a new superuser in Django?

A) python manage.py createsuperuser

B) python manage.py createadmin

C) python manage.py newsuperuser

D) python manage.py makesuperuser

19. Which template engine is used by default in Django?

A) Jinja2

B) Mako

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

219 Periyar University – CDOE| Self-Learning Material

C) Django Template Language (DTL)

D) Mustache

20. How do you pass context data to a template in a Django view?

A) context = {'key': 'value'}; render(request, 'template.html', context)

B) render(request, 'template.html', {'key': 'value'})

C) context = {'key': 'value'}; template('template.html', context)

D) render(request, 'template.html', key='value')

21. Which file in a Django project contains database configuration settings?

A) urls.py

B) views.py

C) models.py

D) settings.py

22. How do you start the Django development server?

A) python manage.py runserver

B) python manage.py startserver

C) python manage.py devserver

D) python manage.py server

23. What is the default port for the Django development server?

A) 8000

B) 8080

C) 5000

D) 3000

24. What does the makemigrations command do in Django?

A) Applies database migrations

B) Creates new migration files based on changes in models

C) Deletes existing migrations

D) Resets the database

25. How do you retrieve all objects from a model in Django?

A) Model.objects.all()

B) Model.objects.get()

C) Model.all()

D) Model.objects.retrieve()

26. Which of the following is a built-in Django field for storing date and time?

A) DateField

B) DateTimeField

C) TimeField

D) TimestampField

27. What is the purpose of the Django shell?

A) To manage static files

B) To run administrative commands

C) To interact with the database from the command line

D) To configure project settings

28. How do you define a foreign key relationship in a Django model?

A) models.ForeignKey('ModelName')

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

220 Periyar University – CDOE| Self-Learning Material

B) models.ForeignKey(ModelName)

C) models.ForeignKey('ModelName', on_delete=models.CASCADE)

D) models.ForeignKey(ModelName, on_delete=models.CASCADE)

29. What is the purpose of the collectstatic command in Django?

A) To delete static files

B) To collect all static files into a single location

C) To serve static files during development

D) To compress static files

30. How do you start a new Django project using a specific template?

A) django-admin startproject projectname --template=template_name

B) django-admin startproject --template=template_name projectname

C) django-admin startproject projectname template_name

D) django-admin startproject template_name projectname

Unit Summary

In this unit, we delved into Django, a high-level Python web framework. We

began by installing Django and creating a new project. Key configurations are handled

in the settings.py file, while applications within the project are initiated using the

startapp command. We explored how to design a data schema using Django's ORM,

defining models to structure our database. An administration site was set up to manage

these models easily. We learned to work with QuerySets and Managers for database

interactions, retrieving objects with methods like filter() and get(). Finally, we built list

and detail views, linking URLs to views and rendering templates to create dynamic

web pages.

Glossary

 Django: A high-level Python web framework that encourages rapid

development and clean, pragmatic design.

 pip: A package installer for Python that is used to install and manage software

packages written in Python.

 Project: In Django, a project is a collection of settings for an instance of Django,

including database configuration, Django-specific options, and application-

specific settings.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

221 Periyar University – CDOE| Self-Learning Material

 Application (App): A web application that does something, such as a blog

system, a database of public records, or a simple poll app. A project can contain

multiple apps.

 Model: A single, definitive source of information about your data. It contains the

essential fields and behaviors of the data you’re storing.

 Migration: A way to propagate changes made to models into the database

schema. Django provides tools to automatically create and apply migrations.

 Admin Site: A built-in feature of Django that provides a web interface for

managing site content. It's highly customizable and supports authentication and

authorization.

 QuerySet: A collection of database queries to retrieve objects from your

database. QuerySets allow you to read the data from the database, filter it, and

order it.

 Manager: A class that manages QuerySets and provides methods to interact

with the database, like creating and retrieving objects.

 URLconf: A mapping between URL patterns and the views that should handle

them. It defines how Django handles different URLs.

 View: A function or class in Django that receives a web request and returns a

web response. Views access the data needed to fulfill the request via models

and render a template to generate the response.

 Template: A text file that defines the structure or layout of a file (such as an

HTML page) and uses placeholders to dynamically insert content.

 Static Files: Files like CSS, JavaScript, and images that are used to style and

provide interactivity to web pages but do not change dynamically with user

interaction.

 Settings.py: A configuration file for a Django project that includes all the

settings for the project, such as database configurations, static files settings,

and middleware configurations.

 Migrate: A command used in Django to apply migrations and sync database

schema with the current state of the models.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

222 Periyar University – CDOE| Self-Learning Material

 Superuser: An administrative user with all permissions, created using the

createsuperuser command, who can log into the Django admin site and manage

all data.

 Render: A function used in views to generate an HTTP response with a

template and a context.

Self – Assessment Questions

1. Evaluate the advantages and disadvantages of using Django as a web

framework for your project. What features of Django make it suitable for rapid

development? Are there any potential limitations or challenges you might face

when using Django?

2. Summarize the steps required to create a new Django project and application.

What commands are used to start a new project and application? How do you

configure the settings for the new project?

3. Compare Django’s Model-View-Template (MVT) architecture with the traditional

model-view-controller (MVC) architecture. What are the key differences and

similarities between MVT and MVC? How does Django’s approach benefit web

development?

4. Elucidate the process of creating and applying migrations in Django. How do

you create a migration for a new model? What are the steps to apply the

migration and ensure the database schema is updated? Explain the purpose

and functionality of the Django admin site. How do you enable the admin site

for your Django project?

5. What are some common tasks you can perform using the Django admin

interface? Analyze the role of QuerySets and Managers in Django’s ORM.

6. How do QuerySets facilitate database operations?What is the function of

Managers in managing QuerySets?

7. Evaluate the methods for handling URLs and views in Django. How do you

define URL patterns and associate them with views?What is the importance of

URLconf in a Django project?

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

223 Periyar University – CDOE| Self-Learning Material

8. Compare class-based views and function-based views in Django. What are the

pros and cons of using class-based views over function-based views? Provide

examples of scenarios where one might be preferred over the other.

9. Elucidate the process of rendering templates in Django. How do you use the

render function to generate an HTTP response? What are the best practices for

organizing and using templates in a Django project?

10. Explain the concept and importance of CSRF tokens in Django forms. How does

Django implement CSRF protection? What are the potential risks if CSRF

tokens are not used?

Activities / Exercises / Case Studies

Activities

1. Creating a Simple Django Project. To set up a new Django project and

create a basic application.

2. Designing and Implementing Models. To design a data schema using

Django models and apply migrations.

Exercises

1. Building List and Detail Views. To create list and detail views for displaying

data from models.

2. Setting Up the Admin Site. To enable and customize the Django admin site

for managing models.

Case Studies

1. Case Study: Developing a To-Do List Application. To apply Django concepts

in building a complete web application.

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

224 Periyar University – CDOE| Self-Learning Material

Answers For Check Your Progress

Modules S.No. Answers

Module 1

1. A) pip install django

2. B) django-admin startproject projectname

3. C) settings.py

4. A) django-admin startapp appname

5. C) To define the structure of the database

6. B) models.CharField(max_length=100)

7. A) python manage.py migrate

8. B) To manage database tables and records

9. B) admin.site.register(MyModel)

10. B) A list of database objects

11. B) filter()

12. A) get()

13. B) To define how URLs map to views

14. B) urls.py

15. B) urlpatterns = [path('pattern/', view)]

16. B) To handle HTTP requests and return responses

17. A) render(request, 'template.html')

18. A) python manage.py createsuperuser

19. C) Django Template Language (DTL)

20. B) render(request, 'template.html', {'key': 'value'})

21. D) settings.py

22. A) python manage.py runserver

23. A) 8000

24. B) Creates new migration files based on changes in

models

25. A) Model.objects.all()

26. B) DateTimeField

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

225 Periyar University – CDOE| Self-Learning Material

27. C) To interact with the database from the command

line

28. D) models.ForeignKey(ModelName,

on_delete=models.CASCADE)

29. B) To collect all static files into a single location

30. B) django-admin startproject --

template=template_name projectn

Suggested Readings

1. Vincent, W. S. (2022). Django for Beginners: Build websites with Python and

Django. WelcomeToCode.

2. Pinkham, A. (2015). Django unleashed. Sams Publishing.

3. Vainikka, J. (2018). Full-stack web development using Django REST framework

and React.

4. Antonio Mele, “Django 3 By Example”, Third Edition, 2020.

Open-Source E-Content Links

1. https://docs.djangoproject.com/en/5.0/

 2. https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django

References

1. Official Django Documentation

o Django Documentation

2. Django Project on GitHub

o Django GitHub

3. Full Stack Python: Django

o A comprehensive guide to using Django within the broader context of

full-stack development.

4. Django Packages

o Django Packages

https://docs.djangoproject.com/en/5.0/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django
https://docs.djangoproject.com/en/stable/
https://github.com/django/django
https://djangopackages.org/

CDOE - ODL M.C.A – SEMESTER I PYTHON PROGRAMMING

226 Periyar University – CDOE| Self-Learning Material

5. PyCon Django Videos

6. Django REST Framework

o Django REST Framework

https://www.django-rest-framework.org/

